4.A Rules of Differentiation

Derivatives of Familiar Functions

Constant Rule

The derivative of a constant is 0. \[\frac{d}{dx}(c)= 0\]

Linear Function Rule

If \(f(x)=mx+b\), then the derivative is the slope \(m\). \[\frac{d}{dx}(mx+b)= m\]

Power Rule

\[\frac{d}{dx}(x^n)=n x^{n-1}\]

Trig Rules

\[\frac{d}{dx}\sin(x)=\cos(x)\] and \[\frac{d}{dx}\cos(x)=-\sin(x)\]

Exponential Rules

\[\frac{d}{dx}(e^x)=e^x\] and for any positive number \(a >0\), \[\frac{d}{dx}(a^x)=(\ln a)a^x\]

Logarithmic Rules

\[\frac{d}{dx}(\ln (x))=\frac{1}{x}\] and for any positive number \(a >0\), \[\frac{d}{dx}(\log_a x)= \frac{1}{\ln (a)} \cdot \frac{1}{x}\]

Arithmetic Rules for Derivatives

Constant Multiple Rule

If \(c\) is a constant, then \[\frac{d}{dx}(cf(x))=c\frac{d}{dx}f(x)=cf'(x)\]

Sum and Difference Rules

\[\frac{d}{dx}(f(x)+g(x))=\frac{d}{dx}f(x)+\frac{d}{dx}g(x)=f'(x)+g'(x)\] and \[\frac{d}{dx}(f(x)-g(x))=\frac{d}{dx}f(x)-\frac{d}{dx}g(x)=f'(x)-g'(x)\]

Rules for Combinations of Functions

Product Rule

If \(f(x)\) and \(g(x)\) are functions then \[(fg)'=f'g+fg' \phantom{hihi} \text{ or } \phantom{hihi}(1st \cdot 2nd )'=D1st \cdot 2nd + 1st \cdot D2nd\]

Quotient Rule

If \(f(x)\) and \(g(x)\) are functions then \[\left(\frac{f}{g} \right ) '=\frac{gf'-fg'}{g^2} \phantom{hihi}\text{ or } \phantom{hihi}\left(\frac{hi}{lo} \right ) '=\frac{loDhi-hiDlo}{lo^2}\]

Chain Rule

If \(y=f(t)\) and \(t=g(x)\) are functions, then the derivative of \(y=f(g(x))\) is given by \[\frac{dy}{dx}=\frac{dy}{dt}\frac{dt}{dx} \phantom{hihi}\text{ or } \phantom{hihi}\frac{d}{dx}(f(g(x)))=f'(g(x))g'(x)=D(outside)D(inside)\]