Skip to main content
\( \newcommand{\identity}{\mathrm{id}} \newcommand{\notdivide}{{\not{\mid}}} \newcommand{\notsubset}{\not\subset} \newcommand{\lcm}{\operatorname{lcm}} \newcommand{\gf}{\operatorname{GF}} \newcommand{\inn}{\operatorname{Inn}} \newcommand{\aut}{\operatorname{Aut}} \newcommand{\Hom}{\operatorname{Hom}} \newcommand{\cis}{\operatorname{cis}} \newcommand{\chr}{\operatorname{char}} \newcommand{\Null}{\operatorname{Null}} \def\Z{\mathbb Z} \def\R{\mathbb R} \def\Q{\mathbb Q} \def\N{{\mathbb N}} \def\C{\mathbb C} \def\ba{{\mathbf{a}}} \def\bb{\mathbf{b}} \def\bh{{\mathbf{h}}} \def\bu{{\mathbf{u}}} \def\bv{{\mathbf{v}}} \def\bw{{\mathbf{w}}} \def\bx{{\mathbf{x}}} \def\by{\mathbf{y}} \def\bone{{\mathbf{1}}} \def\bzero{\mathbf{0}} \def\var{{\mbox{var}}} \def\P{{\mathbb{P}}} \def\E{{\mathbb{E}}} \def\cA{{\mathcal{A}}} \def\cB{{\mathcal{B}}} \def\cC{{\mathcal{C}}} \def\cP{\mathcal P} \def\cE{\mathcal E} \def\cO{\mathcal O} \def\kin{k^{\mathrm{in}}} \def\kout{k^{\mathrm{out}}} \newcommand{\indeg}[1]{k^{\mathrm{in}}_{#1}} \newcommand{\outdeg}[1]{k^{\mathrm{out}}_{#1}} \tikzset{->-/.style={decoration={ markings, mark=at position .5 with {\arrow{latex}}},postaction={decorate}}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \)
Enumerative Combinatorics:
Activities and Exercises
Andrew Beveridge
Contents
Prev
Up
Next
Contents
Prev
Up
Next
Front Matter
I
Counting
1
Basic Counting
2
Pigeonhole Principle
3
Functions
4
Bijective Proof
5
Combinatorial Proof
6
Compositions of Integers
7
Set Partitions
8
Integer Partitions
9
Inclusion/Exclusion
10
Catalan Numbers
11
Counting Exercises
II
Generating Functions
12
Bestiarum Generandi
13
Generating Function Introduction
14
Generating Functions for Integer Compositions
15
Products of Generating Functions II
16
Compositions of Generating Functions
17
Generating Function Exercises
III
Permutations
18
Recurrences for Eulerian Numbers
19
Descending Binary Trees
20
Cycle Structure of Permutations
21
Average Number of Cycles in a Permutation
22
The Transition Lemma
23
Exercises
IV
Graphs
24
Graph Automorphisms and Graph Labelings
25
Cayley's Theorem
26
Counting Trees and Forests
27
Graphs and Generating Functions
28
Graph Exercises
Authored in PreTeXt
Enumerative Combinatorics:
Activities and Exercises
Andrew Beveridge
Department of Mathematics, Statistics and Computer Science
Macalester College
abeverid@macalester.edu
December 8, 2021