Chapter 12 Bestiarum Generandi
Subsection 12.1 Variations on the Binomial Theorem
For any \(k \in \mathbb{N}\text{,}\)
\begin{equation*}
\begin{array}{rcccl}
\displaystyle{
(1+x)^k
}
&=& \displaystyle{
\sum_{n=0}^{k} {k \choose n} x^n
}&=& \displaystyle{
1 + {k \choose 1} x + {k \choose 2} x^2 + {k \choose 3} x^3 + \cdots + {k
\choose k} x^k
} \\
\displaystyle{
(1+ax)^k
}
&=& \displaystyle{
\sum_{n=0}^{k} {k \choose n} a^n x^n
}&=& \displaystyle{
1 + {k \choose 1} a x + {k \choose 2} a^2 x^2 + {k \choose 3} a^3 x^3 + \cdots + {k
\choose k} a^k x^k
} \\
\displaystyle{
(1+x^r)^k
}
&=& \displaystyle{
\sum_{n=0}^{k} {k \choose n} x^{nr}
}&=& \displaystyle{
1 + {k \choose 1} x^r + {k \choose 2} x^{2r} + {k \choose 3} x^{3r} + \cdots + {k
\choose k} x^{kr}
} \\
\end{array}
\end{equation*}
Subsection 12.2 Generalized Binomial Theorem
For any \(a \in \R\text{,}\)
\begin{equation*}
\begin{array}{rcccl}
\displaystyle{
(1+x^r)^a
}
&=& \displaystyle{
\sum_{n=0}^{\infty} {a \choose n} x^{nr}
}&=& \displaystyle{
1 + {a \choose 1} x^r + {a \choose 2} x^{2r} + {a \choose 3} x^{3r} + \cdots
} \\
\end{array}
\end{equation*}
Subsection 12.3 Variations on Geometric Series
\begin{equation*}
\begin{array}{rcccl}
\displaystyle{
\frac{1}{1-x}
}
&=& \displaystyle{
\sum_{n=0}^{\infty} x^n
}&=& \displaystyle{
1 + x + x^2 + x^3 + \cdots
} \\
\displaystyle{
\frac{1}{1-a x}
}
&=& \displaystyle{
\sum_{n=0}^{\infty} a^n x^n
}&=& \displaystyle{
1 + a x + a^2 x^2 + a^3 x^3 + \cdots
} \\
\displaystyle{
\frac{1}{1-x^k}
}
&=& \displaystyle{
\sum_{n=0}^{\infty} x^{nk}
}&=& \displaystyle{
1 + x^k + x^{2k} + x^{3k} + \cdots
} \\
\displaystyle{
\frac{1}{(1-x)^2}
}
&=& \displaystyle{
\sum_{n=0}^{\infty} (n+1) x^{n}
}&=& \displaystyle{
1 + 2x + 3x^{2} + 4x^{3} + \cdots
} \\
\displaystyle{
\frac{1}{(1-x)^k}
}
&=& \displaystyle{
\sum_{n=0}^{\infty} {k+n-1 \choose n} x^{n}
}&=& \displaystyle{
1 + {k \choose 1} x + {k+1 \choose 2}x^{2} + {k+2 \choose 3}x^{3} + \cdots
} \\
\displaystyle{
\frac{1}{(1-ax)^k}
}
&=& \displaystyle{
\sum_{n=0}^{\infty} {k+n-1 \choose n} a^n x^{n}
}&=& \displaystyle{
1 + {k \choose 1} a x + {k+1 \choose 2}a^2 x^{2} + {k+2 \choose 3} a^3 x^{3} + \cdots
} \\
\\
\displaystyle{
\log \left(\frac{1}{1-x} \right)
}
&=& \displaystyle{
\sum_{n=1}^{\infty} \frac{x^{n}}{n}
}&=& \displaystyle{
x + \frac{x^{2}}{2} + \frac{x^{3}}{3} + \frac{x^{4}}{4} +\cdots
} \\
\end{array}
\end{equation*}
Subsection 12.4 Variations on Exponential Series
\begin{equation*}
\begin{array}{rcccl}
\displaystyle{
e^x
}
&=& \displaystyle{
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
}&=& \displaystyle{
1+x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \frac{x^{4}}{24} +\cdots
} \\
\displaystyle{
e^{ax}
}
&=& \displaystyle{
\sum_{n=0}^{\infty} \frac{a^n x^{n}}{n!}
}&=& \displaystyle{
1+ax + \frac{a^2x^{2}}{2} + \frac{a^3x^{3}}{6} + \frac{a^4x^{4}}{24} +\cdots
} \\
\displaystyle{
e^{x^k}
}
&=& \displaystyle{
\sum_{n=0}^{\infty} \frac{x^{nk}}{n!}
}&=& \displaystyle{
1+x^k + \frac{x^{2k}}{2} + \frac{x^{3k}}{6} + \frac{x^{4k}}{24} +\cdots
} \\
\displaystyle{
\sinh x = \frac{e^x - e^{-x}}{2}
}
&=& \displaystyle{
\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}
}&=& \displaystyle{
x + \frac{x^{3}}{6} + \frac{x^{5}}{120} + \frac{x^{7}}{5040} +\cdots
} \\
\displaystyle{
\cosh x = \frac{e^x + e^{-x}}{2}
}
&=& \displaystyle{
\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}
}&=& \displaystyle{
1+ \frac{x^{2}}{2} + \frac{x^{4}}{24} + \frac{x^{6}}{720} +\cdots
} \\
\end{array}
\end{equation*}
Subsection 12.5 Other Cute Series
\begin{equation*}
\begin{array}{rcccl}
\displaystyle{
\tan^{-1} x
}
&=& \displaystyle{
\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}
}&=& \displaystyle{
x - \frac{x^{3}}{3} + \frac{x^{5}}{5} - \frac{x^{7}}{7} +\cdots
} \\
\\
\displaystyle{
\log \left( \sqrt{\frac{1+x}{1-x}} \right)
}
&=& \displaystyle{
\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}
}&=& \displaystyle{
x + \frac{x^{3}}{3} + \frac{x^{5}}{5} + \frac{x^{7}}{7} +\cdots
} \\
\\
\displaystyle{
\frac{1}{\sqrt{1-4x}}
}
&=& \displaystyle{
\sum_{n=0}^{\infty} {2n \choose n} x^n
}&=& \displaystyle{
1 + 2x + 6x^2 + 20x^3 +\cdots
} \\
\displaystyle{
\frac{1}{\sqrt{1-x^2}}
}
&=& \displaystyle{
\sum_{n=0}^{\infty} {2n \choose n} \frac{ x^{2n}}{2^{2n}}
}&=& \displaystyle{
1 + \frac{x^2}{2} + \frac{3 x^4}{8} + \frac{5x^6}{16} +\cdots
} \\
\\
\displaystyle{
\frac{1-\sqrt{1-4x}}{2x}
}
&=& \displaystyle{
\sum_{n=0}^{\infty} \frac{1}{2n+1}{2n \choose n} x^n
}&=& \displaystyle{
1 + x + 5x^2 + 14x^3 +\cdots
} \\
\end{array}
\end{equation*}