Skip to main content

Chapter 20 Combinatorial Proof

Exercises Practice Problems

1.

Give a combinatorial proof for the identity

\begin{equation*} {3n \choose 3} = 3 {n \choose 3} + 6n {n \choose 2} + n^3. \end{equation*}
2.

Give a combinatorial proof for the identity

\begin{equation*} \sum_{k=0}^n \left( {n \choose k} \right)^2 = { 2n \choose n}. \end{equation*}

Hint: you will need the identity \({r \choose s} = {r \choose r-s}\text{.}\)

3.

Give a combinatorial proof for the identity

\begin{equation*} {n + m \choose r} = \sum_{i=0}^r {n \choose i} {m \choose r-i}. \end{equation*}
4.

Give a combinatorial proof for the identity

\begin{equation*} {k \choose k} + {k+1 \choose k} + {k+2 \choose k} + \cdots + {n \choose k} = {n+1 \choose k+1}. \end{equation*}

Hint: For the LHS, we have split into cases according to the LARGEST ELEMENT in our \((k+1)\)-set of \([n+1]\text{.}\)