Constructing Voter Preferences Andrew Beveridge joint work with Ian Calaway, Trung Nguyen and Tuyet-Anh Tran Department of Mathematics, Statistics and Computer Science Macalester College > Joint Mathematics Meetings January 2021 reference Order and Separability haracter and Admissibility ## Separability of Voter Preferences ### Motivation - Multi-criteria decision problem - Is a preference on a set of criteria independent of outcomes on other criteria? - If not: - Encourages strategic voting rather than true preferences - No voter's ballot matches the final outcome (Brams et al., 1997) - Applications in political science, economics, etc. - Design and interpretation of referendum elections - Bundle purchasing # 2-Item Bundle: Hotdog and Bun - 2 questions, binary options ($\sqrt{=}$ Yes, $\times=$ No) - Should I buy Hotdogs? - Should I buy Buns? | | | 40 | |---|----------|--------------| | 1 | | | | 2 | 1 | × | | 3 | X | X | | 4 | X | \checkmark | This is a preference order $$11 \succ 10 \succ 00 \succ 01$$ $$\{1, 2\} \succ \{1\} \succ \emptyset \succ \{2\}$$ # Hotdogs and Buns # Hotdogs and Buns # is not separable | | 0 | 4 | |---|---|----------| | 3 | × | × | | 4 | × | √ | # Separability #### Definition $S \subseteq [n]$ is **separable** for a preference order when preferences for outcomes on S are *independent* of the outcomes on $[n] \setminus S$. **Aside:** Separable sets in a preference order are similar to independent events in a probability measure. But there are preference orderings that are not induced by probability measures. (See: Comparative Probability Orders) ### ...and Beer! | | | 79 | (5) | |---|----------|----------|------------| | 1 | √ | √ | ✓ | | 2 | √ | √ | × | | 3 | × | √ | ✓ | | 4 | √ | × | ✓ | | 5 | √ | × | × | | 6 | × | √ | × | | 7 | × | × | √ | | 8 | X | X | × | AND ### ...and Beer! | 1 | > | ✓ | |---|----------|----------| | 2 | ✓ | × | | 3 | × | √ | | 4 | × | × | ### ...and Beer! | 1 | ✓ | √ | |---|----------|----------| | 2 | √ | × | | 3 | × | √ | | 4 | × | × | ### Closure under intersection Theorem (Bradley, Hodge, Kilgour, 2005) If S and T are separable with respect to a preference order, then their intersection $S \cap T$ is also separable. # Warning! | 1 | ✓ | ✓ | √ | |---|----------|----------|----------| | 2 | ✓ | ✓ | × | | 3 | × | ✓ | √ | | 4 | ✓ | × | √ | | 5 | √ | × | × | | 6 | × | √ | × | | 7 | × | × | √ | | 8 | × | × | × | is separable. is separable. BUT is not separable! #### Warning *S* and *T* separable **does not** imply that $S \cup T$ is separable. # Warning! is separable. is separable. BUT is not separable! #### Warning *S* and *T* separable **does not** imply that $S \cup T$ is separable. # Character of Hotdogs and Buns | 1 | \ | | |---|----------|---| | 2 | | × | | 3 | × | × | | 4 | × | | # Character of Hotdogs, Buns, and Beer | | • | | | |---|----------|---|----------| | 1 | ✓ | ✓ | ✓ | | 2 | ✓ | ✓ | × | | 3 | × | ✓ | √ | | 4 | √ | × | √ | | 5 | √ | × | × | | 6 | × | ✓ | × | | 7 | × | × | ✓ | | 8 | × | × | × | # Character and Admissibility #### Definition The **character** char(\succeq) = the collection of subsets $S \subseteq [n]$ that are separable for the preference preorder \succeq (ties are allowed). - A character always contains \emptyset and [n]. - A character is always closed under intersection. #### Definition A collection $\mathcal C$ is **admissible** if there exists a preference preorder \succeq such as $\operatorname{char}(\succeq) = \mathcal C$. Smallest inadmissible collection that is closed under intersection: $$\emptyset$$, {1, 2}, {2}, {2, 3}, {3}, {3, 4}, {1, 2, 3, 4} # The Admissibility Problem ### Research Question [Hodge and TerHarr (2008)] Given a collection $\mathcal C$ of subsets of [n] that contains \emptyset and [n] and is closed under intersections. Is there a preference preorder \succeq on $\mathcal P([n])$ so that $\operatorname{char}(\succeq) = \mathcal C$? Papers on constructing separable characters - Hodge, Krines and Lahr (2009): completely separable - Bjorkman, Gravelle, Hodge (2019): Hamilton paths on the hypercube ### Overview of Our Results - We define the **preference space** P^n , which is a 2^n dimensional vector space corresponding to a referendum election with n ballot measures. - We construct a very useful **voter basis** for P^n - We use this basis to construct families of admissible characters - Collections that are closed under unions and intersections - Collections whose Hasse diagram is a tree (excluding \emptyset). The Voter Basis # Preference Space # Preference Space The **preference space** P^n is the 2^n -dimensional vector space over \mathbb{Q} A vector $v \in P^n$ is called a **preference vector** $$v = \begin{bmatrix} v(\{1,2\}) \\ v(\{1\}) \\ v(\{2\}) \\ v(\emptyset) \end{bmatrix} = \begin{bmatrix} v(11) \\ v(10) \\ v(01) \\ v(00) \end{bmatrix}$$ and $$S \succeq T$$ if and only if $v(S) \ge v(T)$. # Voter Basis for Preference Space P^n The **voter basis** for P^n is $\mathcal{B} = \{v_S : S \subset [n]\}$ where $$v_S(X) = \begin{cases} 1 & |S \cap X| \text{ is even} \\ 0 & |S \cap X| \text{ is odd} \end{cases}$$ #### Pro Tip It is helpful to view S as a **set** and X as an **outcome**. To help us with this distinction we use - set notation for set S - binary notation for outcome X # Voter Basis (Cont.) | 5 | X | <i>S</i> ∩ <i>X</i> | <i>S</i> ∩ <i>X</i> | Parity | V | |-----|--------------|---------------------|---------------------|--------|---| | | 111 | <u></u> + | 2 | Even | 1 | | | √√ x | 979 | 1 | Odd | 0 | | -+9 | √ x √ | | 1 | Odd | 0 | | | √×× | | 0 | Even | 1 | | | x // | <u> </u> | 2 | Even | 1 | | | x/x | 42 | 1 | Odd | 0 | | | ××√ | | 1 | Odd | 0 | | | xxx | | 0 | Even | 1 | # Voter Basis for Preference Space P³ | _ | V | V | V_+ | ٧ | V | V | V | V | |--------------|---|---|-----|---|---|---|---|---| | 111 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | | √√× | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | | √ x √ | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | | √xx | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | | ×/√ | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | | x/x | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | | ××⁄ | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | | xxx | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | # Preference Preorders Induced by Voter Basis Vectors $v_S \in \mathcal{B}$ induces a preference preorder \succeq in which outcomes that are **even** in S are preferred over outcomes that are **odd** in S. | ٧s | induced preference order | |----------------------|---| | v _{1,2,3} | | | $v_{\{1,2\}}$ | $ \{110, 111, 001, 000\} \succ \{101, 100, 011, 010\} $ | | $v_{\{1\}}$ | $ \{011, 010, 001, 000\} \succ \{111, 110, 101, 100\} $ | | vø | {111, 110, 101, 100, 011, 010, 001, 000} | We can build any preference preorder via linear combinations of the v_S . # Voter Basis for Preference Space P^n #### Theorem (B, Calaway 2021) The vectors $$v_S(X) = \begin{cases} 1 & |S \cap X| \text{ is even,} \\ 0 & |S \cap X| \text{ is odd,} \end{cases}$$ form a basis for P^n . **Note:** Variation of Young's seminormal representation of $\mathbb{Z}_2 \wr S_n$. #### Lemma (B, Calaway 2021) The preference preorder induced by the voter vector $v_S(X)$ is separable on X if and only if $$S \subset X$$ or $S \cap X = \emptyset$. Separability of Voter Preferences Preference Space Admissible Character Construction stributive Subset Lattice ree Collection onclusion and Future Worl ### Admissible Character Construction ### Distributive Subset Lattice #### Definition A distributive subset lattice $\mathcal{L} = \{L_1, L_2, \dots, L_m\} \subset \mathcal{P}([n])$ is a collection that contains \emptyset and [n] and is closed under intersections and unions. ### Distributive Subset Lattices are Admissible Theorem (B., Nguyen, Tran, 2021+) Every distributive subset lattice $\mathcal{L} \subset \mathcal{P}([n])$ is admissible. **Proof:** We use the voter basis $$\{v_S \mid S \subset [n]\}$$ of $P^n \cong \mathbb{Q}^{2n}$ to construct a preference vector (i.e. utility function) with character \mathcal{L} . We will try to use as few basis elements as possible. ### Join Irreducibles of \mathcal{L} What is the smallest subcollection $\mathcal{A} \subset \mathcal{L}$ that we can use to generate \mathcal{L} via set unions? Use the **join irreducible** members of the subset lattice \mathcal{L} . (X is join irreducible when $X = Y \cup Z$ forces X = Y or X = Z.) ### Distributive Subset Lattices are Admissible $$v = v_{12345} + 2v_{67} + 4v_{45} + 8v_{23} + 16v_6 + 32v_3$$ - The entries of v describe a utility function on the outcomes. - This utility function induces a preference preorder . - The character (collection of separable sets) of the preference preorder is \mathcal{L} . ### Distributive Subset Lattices are Admissible #### Theorem (B., Nguyen, Tran, 2021+) Let $\mathcal{L} = \{L_1, L_2, \dots, L_m\}$ be a distributive character with join irreducible elements $\mathcal{A} = \{A_1, A_2, \dots, A_\ell\} \subset \mathcal{L}$. Then \mathcal{L} is the character induced by the preference vector $$\mathsf{v} = \sum_{i=1}^\ell 2^{\rho(A_i)} \mathsf{v}_{A_i}$$ where $\rho(A_i)$ is the rank of set A_i in the reverse lexicographical ordering. ### Tree Collection #### Definition A tree collection is a family of subsets $\mathcal{T} \subset \mathcal{P}([n])$ such that $\emptyset, [n] \in \mathcal{T}$, and every pair of sets $A_i, A_j \in \mathcal{T}$ is either nested or disjoint. The Hasse diagram of $\mathcal{T}\setminus\{\emptyset\}$ is a tree. ### Tree Collections are Admissible #### Theorem (B., Calaway 2021) Every tree collection $\mathcal{T} \subset \mathcal{P}([n])$ is admissible. #### Desired Tree Collection \mathcal{T} ### Tree Collections are Admissible #### Theorem (B., Calaway 2021) Every tree collection $\mathcal{T} \subset \mathcal{P}([n])$ is admissible. #### Desired Tree Collection \mathcal{T} order induced by preference vector $$v_{\mathcal{T}} = \sum_{A \in \mathcal{T}} c_A \mathsf{v}_A$$ ### Tree Collections are Admissible #### Theorem (B., Calaway 2021) Every tree collection $\mathcal{T} \subset \mathcal{P}([n])$ is admissible. #### Desired Tree Collection \mathcal{T} order induced by preference vector $$v_{\mathcal{T}} = \sum_{A \in \mathcal{T}} c_A \mathsf{v}_{A} + \sum_{B \in \mathcal{U}} \mathsf{d}_{\mathsf{B}} \mathsf{v}_{\mathsf{B}}$$ small noise breaks unwanted unions # Breaking Separability of Unions of Siblings Hasse Diagram # Breaking Separability of Unions of Siblings Haunted Hasse Diagram # Algorithm for Tree Collection Construction Then put small, distinct weights on unions of siblings 12 13456 178 2345 278 345678 345 36 456 45 ### Conclusion and Future Work - Distributive Lattice Collections are admissible. - Tree Collections are admissible. #### Research Question What other families of separable characters can we build with the voter basis? # Completely Separable Preference Orders The number of non-isomorphic completely separable preference orders, i.e. where every set is separable. | # proposals | # non-isomorphic completely | | |-------------|-----------------------------|--| | | separable preferences | | | 1 | 1 | | | 2 | 1 | | | 3 | 2 | | | 4 | 14 | | | 5 | 546 | | | 6 | 169,444 | | #### Research Question Can we use the voter basis to shed light on the structure of completely separable preferences? To construct them? # The Big Prize: Completely Separable Preferences The 14 completely separable preference orders with respect to the voter basis. | | p ₁ | p ₂ | p ₃ | p ₄ | p ₅ | p ₆ | p ₇ | p ₈ | p ₉ | p ₁₀ | p ₁₁ | p ₁₂ | p ₁₃ | p ₁₄ | |------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------| | Vø | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | | V _{1} | -4 | -1 | -5 | -4 | -10 | -7 | -6 | -3 | -7 | -6 | -9 | -12 | 1 | -2 | | V _{2} | -8 | -9 | -9 | -12 | -6 | -3 | -14 | -11 | -11 | -10 | -5 | -8 | -5 | -8 | | V _{3} | -16 | -17 | -17 | -20 | -20 | -17 | -18 | -15 | -15 | -14 | -15 | -18 | -15 | -18 | | V _{4} | -32 | -31 | -31 | -28 | -28 | -31 | -28 | -31 | -31 | -32 | -31 | -28 | -31 | -28 | | V _{1,2} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | V _{1,3} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | V _{1,4} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | V _{2,3} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | V _{2,4} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | V{3,4} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | V _{1,2,3} | 0 | 3 | -1 | 0 | 0 | 3 | 2 | 5 | 1 | 2 | 5 | 2 | -5 | -8 | | V _{1,2,4} | 0 | -3 | 1 | 0 | 0 | -3 | 0 | -3 | 1 | 0 | -3 | 0 | 7 | 10 | | V _{1,3,4} | 0 | -3 | 1 | 0 | 6 | 3 | 0 | -3 | 1 | 0 | 3 | 6 | -7 | -4 | | V _{2,3,4} | 0 | 1 | 1 | 4 | -2 | -5 | 4 | 1 | 1 | 0 | -5 | -2 | -5 | -2 | | V _{1,2,3,4} | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | # Converting a Preorder into an Order The official definition of admissibility requires \succeq to be an order (rather than a preorder). #### Lemma Let $v \in P^n$ induce preference preorder \succeq with character C. Suppose that for every nonseparable set $B \notin C$, there exist partial outcomes $x_B, y_B, u_{[n]-B}, v_{[n]-B}$ such that $$x_B u_{[n]-B} \succ y_B u_{[n]-B}$$ and $x_B v_{[n]-B} \prec y_B v_{[n]-B}$. Then there is preference vector \mathbf{v}' that induces a preference order \succeq' with character \mathcal{C} . **Technical Condition:** For every nonseparable B, a some partial preference must truly flip (rather than changing to indifference).