Constructing Voter Preferences

Andrew Beveridge
joint work with
Ian Calaway, Trung Nguyen and Tuyet-Anh Tran

Department of Mathematics, Statistics and Computer Science Macalester College

> Joint Mathematics Meetings January 2021

reference Order and Separability haracter and Admissibility

Separability of Voter Preferences

Motivation

- Multi-criteria decision problem
 - Is a preference on a set of criteria independent of outcomes on other criteria?
 - If not:
 - Encourages strategic voting rather than true preferences
 - No voter's ballot matches the final outcome (Brams et al., 1997)
- Applications in political science, economics, etc.
 - Design and interpretation of referendum elections
 - Bundle purchasing

2-Item Bundle: Hotdog and Bun

- 2 questions, binary options ($\sqrt{=}$ Yes, $\times=$ No)
 - Should I buy Hotdogs?
 - Should I buy Buns?

		40
1		
2	1	×
3	X	X
4	X	\checkmark

This is a preference order

$$11 \succ 10 \succ 00 \succ 01$$
$$\{1, 2\} \succ \{1\} \succ \emptyset \succ \{2\}$$

Hotdogs and Buns

Hotdogs and Buns

is not separable

	0	4
3	×	×
4	×	√

Separability

Definition

 $S \subseteq [n]$ is **separable** for a preference order when preferences for outcomes on S are *independent* of the outcomes on $[n] \setminus S$.

Aside: Separable sets in a preference order are similar to independent events in a probability measure. But there are preference orderings that are not induced by probability measures.

(See: Comparative Probability Orders)

...and Beer!

		79	(5)
1	√	√	✓
2	√	√	×
3	×	√	✓
4	√	×	✓
5	√	×	×
6	×	√	×
7	×	×	√
8	X	X	×

AND

...and Beer!

1	>	✓
2	✓	×
3	×	√
4	×	×

...and Beer!

1	✓	√
2	√	×
3	×	√
4	×	×

Closure under intersection

Theorem (Bradley, Hodge, Kilgour, 2005)

If S and T are separable with respect to a preference order, then their intersection $S \cap T$ is also separable.

Warning!

1	✓	✓	√
2	✓	✓	×
3	×	✓	√
4	✓	×	√
5	√	×	×
6	×	√	×
7	×	×	√
8	×	×	×

is separable.

is separable.

BUT

is not separable!

Warning

S and *T* separable **does not** imply that $S \cup T$ is separable.

Warning!

is separable.

is separable.

BUT

is not separable!

Warning

S and *T* separable **does not** imply that $S \cup T$ is separable.

Character of Hotdogs and Buns

1	\	
2		×
3	×	×
4	×	

Character of Hotdogs, Buns, and Beer

	•		
1	✓	✓	✓
2	✓	✓	×
3	×	✓	√
4	√	×	√
5	√	×	×
6	×	✓	×
7	×	×	✓
8	×	×	×

Character and Admissibility

Definition

The **character** char(\succeq) = the collection of subsets $S \subseteq [n]$ that are separable for the preference preorder \succeq (ties are allowed).

- A character always contains \emptyset and [n].
- A character is always closed under intersection.

Definition

A collection $\mathcal C$ is **admissible** if there exists a preference preorder \succeq such as $\operatorname{char}(\succeq) = \mathcal C$.

Smallest inadmissible collection that is closed under intersection:

$$\emptyset$$
, {1, 2}, {2}, {2, 3}, {3}, {3, 4}, {1, 2, 3, 4}

The Admissibility Problem

Research Question [Hodge and TerHarr (2008)]

Given a collection $\mathcal C$ of subsets of [n] that contains \emptyset and [n] and is closed under intersections. Is there a preference preorder \succeq on $\mathcal P([n])$ so that $\operatorname{char}(\succeq) = \mathcal C$?

Papers on constructing separable characters

- Hodge, Krines and Lahr (2009): completely separable
- Bjorkman, Gravelle, Hodge (2019): Hamilton paths on the hypercube

Overview of Our Results

- We define the **preference space** P^n , which is a 2^n dimensional vector space corresponding to a referendum election with n ballot measures.
- We construct a very useful **voter basis** for P^n
- We use this basis to construct families of admissible characters
 - Collections that are closed under unions and intersections
 - Collections whose Hasse diagram is a tree (excluding \emptyset).

The Voter Basis

Preference Space

Preference Space

The **preference space** P^n is the 2^n -dimensional vector space over \mathbb{Q}

A vector $v \in P^n$ is called a **preference vector**

$$v = \begin{bmatrix} v(\{1,2\}) \\ v(\{1\}) \\ v(\{2\}) \\ v(\emptyset) \end{bmatrix} = \begin{bmatrix} v(11) \\ v(10) \\ v(01) \\ v(00) \end{bmatrix}$$

and

$$S \succeq T$$
 if and only if $v(S) \ge v(T)$.

Voter Basis for Preference Space P^n

The **voter basis** for P^n is $\mathcal{B} = \{v_S : S \subset [n]\}$ where

$$v_S(X) = \begin{cases} 1 & |S \cap X| \text{ is even} \\ 0 & |S \cap X| \text{ is odd} \end{cases}$$

Pro Tip

It is helpful to view

S as a **set**

and

X as an **outcome**.

To help us with this distinction we use

- set notation for set S
- binary notation for outcome X

Voter Basis (Cont.)

5	X	<i>S</i> ∩ <i>X</i>	<i>S</i> ∩ <i>X</i>	Parity	V
	111	<u></u> +	2	Even	1
	√√ x	979	1	Odd	0
-+9	√ x √		1	Odd	0
	√××		0	Even	1
	x //	<u> </u>	2	Even	1
	x/x	42	1	Odd	0
	××√		1	Odd	0
	xxx		0	Even	1

Voter Basis for Preference Space P³

_	V	V	V_+	٧	V	V	V	V
111	0	1	1	0	1	0	0	1
√√×	1	1	0	0	0	0	1	1
√ x √	1	0	1	0	0	1	0	1
√xx	0	0	0	0	1	1	1	1
×/√	1	0	0	1	1	0	0	1
x/x	0	0	1	1	0	0	1	1
××⁄	0	1	0	1	0	1	0	1
xxx	1	1	1	1	1	1	1	1

Preference Preorders Induced by Voter Basis Vectors

 $v_S \in \mathcal{B}$ induces a preference preorder \succeq in which outcomes that are **even** in S are preferred over outcomes that are **odd** in S.

٧s	induced preference order
v _{1,2,3}	
$v_{\{1,2\}}$	$ \{110, 111, 001, 000\} \succ \{101, 100, 011, 010\} $
$v_{\{1\}}$	$ \{011, 010, 001, 000\} \succ \{111, 110, 101, 100\} $
vø	{111, 110, 101, 100, 011, 010, 001, 000}

We can build any preference preorder via linear combinations of the v_S .

Voter Basis for Preference Space P^n

Theorem (B, Calaway 2021)

The vectors
$$v_S(X) = \begin{cases} 1 & |S \cap X| \text{ is even,} \\ 0 & |S \cap X| \text{ is odd,} \end{cases}$$
 form a basis for P^n .

Note: Variation of Young's seminormal representation of $\mathbb{Z}_2 \wr S_n$.

Lemma (B, Calaway 2021)

The preference preorder induced by the voter vector $v_S(X)$ is separable on X if and only if

$$S \subset X$$
 or $S \cap X = \emptyset$.

Separability of Voter Preferences Preference Space Admissible Character Construction

stributive Subset Lattice ree Collection onclusion and Future Worl

Admissible Character Construction

Distributive Subset Lattice

Definition

A distributive subset lattice $\mathcal{L} = \{L_1, L_2, \dots, L_m\} \subset \mathcal{P}([n])$ is a collection that contains \emptyset and [n] and is closed under intersections and unions.

Distributive Subset Lattices are Admissible

Theorem (B., Nguyen, Tran, 2021+)

Every distributive subset lattice $\mathcal{L} \subset \mathcal{P}([n])$ is admissible.

Proof: We use the voter basis

$$\{v_S \mid S \subset [n]\}$$

of $P^n \cong \mathbb{Q}^{2n}$ to construct a preference vector (i.e. utility function) with character \mathcal{L} .

We will try to use as few basis elements as possible.

Join Irreducibles of \mathcal{L}

What is the smallest subcollection $\mathcal{A} \subset \mathcal{L}$ that we can use to generate \mathcal{L} via set unions?

Use the **join irreducible** members of the subset lattice \mathcal{L} . (X is join irreducible when $X = Y \cup Z$ forces X = Y or X = Z.)

Distributive Subset Lattices are Admissible

$$v = v_{12345} + 2v_{67} + 4v_{45} + 8v_{23} + 16v_6 + 32v_3$$

- The entries of v describe a utility function on the outcomes.
- This utility function induces a preference preorder

 .
- The character (collection of separable sets) of the preference preorder is \mathcal{L} .

Distributive Subset Lattices are Admissible

Theorem (B., Nguyen, Tran, 2021+)

Let $\mathcal{L} = \{L_1, L_2, \dots, L_m\}$ be a distributive character with join irreducible elements $\mathcal{A} = \{A_1, A_2, \dots, A_\ell\} \subset \mathcal{L}$. Then \mathcal{L} is the character induced by the preference vector

$$\mathsf{v} = \sum_{i=1}^\ell 2^{\rho(A_i)} \mathsf{v}_{A_i}$$

where $\rho(A_i)$ is the rank of set A_i in the reverse lexicographical ordering.

Tree Collection

Definition

A tree collection is a family of subsets $\mathcal{T} \subset \mathcal{P}([n])$ such that $\emptyset, [n] \in \mathcal{T}$, and every pair of sets $A_i, A_j \in \mathcal{T}$ is either nested or disjoint.

The Hasse diagram of $\mathcal{T}\setminus\{\emptyset\}$ is a tree.

Tree Collections are Admissible

Theorem (B., Calaway 2021)

Every tree collection $\mathcal{T} \subset \mathcal{P}([n])$ is admissible.

Desired Tree Collection \mathcal{T}

Tree Collections are Admissible

Theorem (B., Calaway 2021)

Every tree collection $\mathcal{T} \subset \mathcal{P}([n])$ is admissible.

Desired Tree Collection \mathcal{T}

order induced by preference vector

$$v_{\mathcal{T}} = \sum_{A \in \mathcal{T}} c_A \mathsf{v}_A$$

Tree Collections are Admissible

Theorem (B., Calaway 2021)

Every tree collection $\mathcal{T} \subset \mathcal{P}([n])$ is admissible.

Desired Tree Collection \mathcal{T}

order induced by preference vector

$$v_{\mathcal{T}} = \sum_{A \in \mathcal{T}} c_A \mathsf{v}_{A} + \sum_{B \in \mathcal{U}} \mathsf{d}_{\mathsf{B}} \mathsf{v}_{\mathsf{B}}$$

small noise breaks unwanted unions

Breaking Separability of Unions of Siblings

Hasse Diagram

Breaking Separability of Unions of Siblings

Haunted Hasse Diagram

Algorithm for Tree Collection Construction

Then put small, distinct weights on unions of siblings

12 13456 178 2345 278 345678

345 36

456

45

Conclusion and Future Work

- Distributive Lattice Collections are admissible.
- Tree Collections are admissible.

Research Question

What other families of separable characters can we build with the voter basis?

Completely Separable Preference Orders

The number of non-isomorphic completely separable preference orders, i.e. where every set is separable.

# proposals	# non-isomorphic completely	
	separable preferences	
1	1	
2	1	
3	2	
4	14	
5	546	
6	169,444	

Research Question

Can we use the voter basis to shed light on the structure of completely separable preferences? To construct them?

The Big Prize: Completely Separable Preferences

The 14 completely separable preference orders with respect to the voter basis.

	p ₁	p ₂	p ₃	p ₄	p ₅	p ₆	p ₇	p ₈	p ₉	p ₁₀	p ₁₁	p ₁₂	p ₁₃	p ₁₄
Vø	64	64	64	64	64	64	64	64	64	64	64	64	64	64
V _{1}	-4	-1	-5	-4	-10	-7	-6	-3	-7	-6	-9	-12	1	-2
V _{2}	-8	-9	-9	-12	-6	-3	-14	-11	-11	-10	-5	-8	-5	-8
V _{3}	-16	-17	-17	-20	-20	-17	-18	-15	-15	-14	-15	-18	-15	-18
V _{4}	-32	-31	-31	-28	-28	-31	-28	-31	-31	-32	-31	-28	-31	-28
V _{1,2}	0	0	0	0	0	0	0	0	0	0	0	0	0	0
V _{1,3}	0	0	0	0	0	0	0	0	0	0	0	0	0	0
V _{1,4}	0	0	0	0	0	0	0	0	0	0	0	0	0	0
V _{2,3}	0	0	0	0	0	0	0	0	0	0	0	0	0	0
V _{2,4}	0	0	0	0	0	0	0	0	0	0	0	0	0	0
V{3,4}	0	0	0	0	0	0	0	0	0	0	0	0	0	0
V _{1,2,3}	0	3	-1	0	0	3	2	5	1	2	5	2	-5	-8
V _{1,2,4}	0	-3	1	0	0	-3	0	-3	1	0	-3	0	7	10
V _{1,3,4}	0	-3	1	0	6	3	0	-3	1	0	3	6	-7	-4
V _{2,3,4}	0	1	1	4	-2	-5	4	1	1	0	-5	-2	-5	-2
V _{1,2,3,4}	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Converting a Preorder into an Order

The official definition of admissibility requires \succeq to be an order (rather than a preorder).

Lemma

Let $v \in P^n$ induce preference preorder \succeq with character C. Suppose that for every nonseparable set $B \notin C$, there exist partial outcomes $x_B, y_B, u_{[n]-B}, v_{[n]-B}$ such that

$$x_B u_{[n]-B} \succ y_B u_{[n]-B}$$
 and $x_B v_{[n]-B} \prec y_B v_{[n]-B}$.

Then there is preference vector \mathbf{v}' that induces a preference order \succeq' with character \mathcal{C} .

Technical Condition: For every nonseparable B, a some partial preference must truly flip (rather than changing to indifference).