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Abstract. We consider two distinct centers which arise in measuring how quickly a random walk
on a tree mixes. Lovász and Winkler [9] point out that stopping rules which “look where they are
going” (rather than simply walking a fixed number of steps) can achieve a desired distribution exactly
and efficiently. Considering an optimal stopping rule that reflects some aspect of mixing, we can use
the expected length of this rule as a mixing measure. On trees, a number of these mixing measures
identify particular nodes with central properties. In this context, we study a variety of natural
notions of centrality. Each of these criteria identifies the barycenter of the tree as the “average”
center and the newly defined focus as the “extremal” center.
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1. Introduction. What node is most central with respect to a random walk on
a tree G = (V,E)? We define P = {pij} to be the matrix of transition probabilities,
so pij = 1/d(i) if ij ∈ E and pij = 0 otherwise. Let the hitting time H(i, j) be
the expected time for a random walk starting at node i to get to node j. A natural
definition for centrality is to require that the target node j minimize this hitting
time for an appropriately chosen starting node i. We consider two natural choices for
this starting node. First, we identify the “average” center c by drawing i from the
stationary distribution π:∑

i∈V
πiH(i, c) = min

j∈V

∑
i∈V

πiH(i, j).(1.1)

Next we choose the worst possible starting node for each target j. Let j′ be a j-
pessimal node satisfying H(j′, j) = maxi∈V H(i, j). A target node a achieving

H(a′, a) = min
j∈V

H(j′, j) = min
j∈V

max
i∈V

H(i, j)(1.2)

is the “extremal” center of the tree.
There are two classical centers for trees. A node achieving mini∈V maxj∈V d(i, j),

where d(i, j) is the length of the unique path between i and j, is the center of the
tree G (or bicenter if there are two adjacent nodes achieving this minimum). In other
words, the distance to the furthest node from the center is minimal among all nodes
of the tree G. This node does not appear to have any central properties with respect
to random walks.

The barycenter is the node (or two adjacent nodes) achieving mini∈V
∑
j∈V d(i, j).

A barycenter minimizes the total distance to all other nodes. The propostion below
reveals that the barycenter is the “average” center of the tree with respect to random
walks. If u, v are adjacent nodes, let Vu:v be the set of nodes in the subtree rooted
at u after the removal of the edge uv. This notation is meant to emphasize that
nodes in Vu:v are closer to u than to v. For any S ⊂ V and any distribution τ ,
let τ(S) =

∑
k∈S τk. For an undirected graph, Coppersmith, Tetali and Winkler [5]
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2 A. BEVERIDGE

define the central node to be a node c for which H(i, c) ≤ H(c, i) for every node i.
The following equivalence has been known to the authors of [5].

Proposition 1.1. Let G = (V,E) be a tree. The following statements for a node
c are equivalent.

(a) The node c is a barycenter of the tree.

(b) The node c satisfies H(i, c) ≤ H(c, i) for every node i.
(c)

∑
k∈V

πkH(k, c) = min
i∈V

∑
k∈V

πkH(k, i).

(d) For every node i adjacent to c, π(Vi:c) =
∑
k∈Vi:c

πk ≤ 1/2.

We introduce the term focus to denote the “extremal” center of the tree. There
are two types: primary foci and secondary foci.

Definition. Let G be a tree. If a ∈ V satisfies H(a′, a) = minj∈V maxi∈V H(i, j)
then a is a primary focus of G. When all of the a-pessimal nodes are contained in
a single subtree G′ ⊂ G\{a}, the unique a-neighbor b in G′ is also a focus of G.
If H(b′, b) = H(a′, a) then b is a primary focus. If H(b′, b) > H(a′, a) then b is a
secondary focus of G.

Proposition 1.2. Every tree G either has one focus or has two adjacent foci.
When G has a single focus, we say that G is focal. When G has two adjacent foci,

we say that G is bifocal. A bifocal tree may have two primary foci or it may have
one primary focus and one secondary focus. For a bifocal tree G with adjacent foci
a, b we will see that a has central properties for nodes in Va:b and that b has central
properties for nodes in Vb:a.

We consider some examples of foci for trees. Let Pn denote the path of length n
on vertices v0, v1, . . . , vn. It is well known that

H(vi, vj) =
{

j2 − i2 i ≤ j
(n− j)2 − (n− i)2 i > j.

(1.3)

A vi-pessimal node must be the furthest leaf from vi. The node that achieves
minvi∈Pn H(v′i, vi) is the center of the path, so the unique focus of P2k is vk and
the foci of P2k+1 are vk and vk+1. In the latter case, both nodes are primary foci
since H(v′k, vk) = H(v2k+1, vk) = (k + 1)2 = H(v0, vk+1) = H(v′k+1, vk+1).

Let Br,s denote the broom graph consisting of a star with r leaves u1, u2, . . . , ur
centered at node c, along with a path of length s on nodes c = v0, v1, . . . , vs. Simple
calculations (using formula (2.6) in section 2) for B4k,4k show that node vk is the
primary focus with H(v′k, vk) = H(u1, vk−1) = 9k2 + 1 and that vk−1 is the sec-
ondary focus with H(v′k−1, vk−1) = H(v4k, vk−1) = (3k + 1)2. Moreover, this broom
graph shows that center, barycenter and foci of the tree are distinct notions. Indeed,
additional calculations show that the nodes v2k, v2k+1 are centers of B4k,4k and the
barycenter is c = v0. These three types of centers are pairwise separated by distance
Θ(k).

Having defined the average and extremal centers, we consider a variety of criteria
for centrality with respect to random walks on trees. The barycenter satisfies each
“average” criterion and one of the foci of the tree (or both) satisfies each “extremal”
criterion. Many of these criteria concern exact mixing measures defined via lengths
of stopping rules.

Given an initial node i and a target distribution τ , we can follow an optimal
stopping rule (see section 2 for a precise definition) to halt a random walk starting at
i so that the distribution of the final node is exactly τ . Denote the expected length of



CENTERS FOR RANDOM WALKS ON TREES 3

this optimal rule by H(i, τ). A number of parameterless mixing measures defined via
stopping rules have been introduced and studied in [1], [2], [3], [9], [10]. Among the
most important measures are the mixing time Tmix = maxi∈V H(i, π) and the reset
time Treset =

∑
i∈V πiH(i, π). We interpret Tmix as the pessimal mixing time and

Treset as the average mixing time.
Since the barycenter is so closely related to average mixing, a natural question is

how H(c, π) compares with Treset.
Proposition 1.3. H(c, π) ≤ 2Treset where c is a barycenter of the tree. This

bound is tight for a star K1,k with k ≥ 2.
H(c, π) may be considerably smaller than Treset. Indeed, consider a rooted m-ary

tree of depth r. By symmetry its root c is the unique barycenter and the unique focus.
Theorem 1.4. If G is an m-ary tree of depth r rooted at node c then

H(c, π) =
(m+ 1)(mr + 1)
(m− 1)(mr − 1)

r − m2 + 6m+ 1
2(m− 1)2

(1.4)

and

Treset =
2mr+1 − rm2 − 2m+ r

(m− 1)2
.(1.5)

Holding m fixed and letting r →∞, mixing from the root takes Θ(r) steps while
average mixing takes Θ(mr−1) steps. The exact mixing result of equation (1.4) is
complementary to the following approximate mixing result for m-ary trees due to
Diaconis and Fill (Example 4.60 in [6]). If σt is the distribution achieved by walking
t steps from the root c then for fixed m, as r → ∞, the total variational distance
‖σt − π‖ becomes small after m+1

m−1r + αr1/2 steps for a large constant α.
We now turn our attention to the extremal center. Our analysis of the foci relies

heavily on stopping rules. We provide a definition for the foci of a distribution τ (which
is actually a generalization of the definition of the foci of a tree; see proposition 1.6
below). For any target distribution τ we associate one node or two adjacent nodes
that are central with respect to stopping rules from singleton distributions to τ .

Definition. A node i is a focus of the distribution τ when H(i, τ) < 1 +∑
j∈V pijH(j, τ).

The left hand side of this equation is the the expected length of an optimal rule.
The right hand side of the equation is the expected length of the rule “take one step
from i (according to the transition probabilities P = {pij}) and then follow an optimal
rule starting from this neighbor node to τ .” The τ -foci are the nodes for which this
composite rule is not optimal.

For example, consider the path P2 on nodes v0, v1, v2 and take our target to be
π = (1/4, 1/2, 1/4). We first consider an optimal stopping rule from the center to π.
Let Γ1(v1, π) be the rule “with probability 1/2 take one step to a random neighbor,
otherwise stay put.” The expected length E(Γ1(v1, π)) = 1/2 and equation (2.8) in
the next section shows that this rule is an optimal rule from v1 to π. Now consider
the rule Γ2(v1, π); “take one step and then follow an optimal rule to π.” This rule is
not optimal since E(Γ2(v1, π)) > 1 > 1/2.

Finally consider the rule Γ(v0, π) from v0 to π: “take one step and then follow the
optimal rule Γ1(v1, π).” This turns out to be an optimal rule with E(Γ(v0, π)) = 3/2.
The analogous rule from v2 to π is also optimal. Therefore according to the definition
above, the center v1 is the unique focus for P2. An analogous argument shows that
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the two internal nodes of P4 are the foci for π. A similar phenomenon holds for an
arbitrary tree.

Theorem 1.5. Every distribution τ on a tree has either one focus or two adjacent
foci. If τ has a unique focus u then H(i, τ) = H(i, u) + H(u, τ) for all i. If τ
has two foci u, v then for i ∈ Vu:v, H(i, τ) = H(i, u) + H(u, τ) and for i ∈ Vv:u,
H(i, τ) = H(i, v) +H(v, τ).

The key observation of this theorem is that for any node i, the rule “walk from
i to the nearest τ -focus and then follow an optimal rule from that focus to τ” is an
optimal rule from i to τ . In other words, the foci of τ are central with respect to all
walks from nodes to τ .

Naturally, the foci of the tree coincide with the foci of π.
Proposition 1.6. The foci of the tree G are the foci of the distribution π.
This proposition shows that the focus of a distribution is indeed a generalization

of the focus of the tree.
Another important mixing measure is the forget time Tforget = minτ maxi∈V H(i, τ)

where the minimum is taken over all target distributions. We interpret this quantity
as the minimum expected time to “forget” the node we started from by following an
optimal rule to some distribution. In spite of its rather unorthodox definition, the
forget time is intimately connected to the mixing time and the reset time. For an
undirected graph, we have the nontrivial equality Treset = Tforget (see [10]) and they
are within a factor of 4 of Tmix (see [2]).

For any graph, Lovász and Winkler [10] show that there is a unique distribution
µ achieving the forget time. This distribution µ is central in an extremal sense: µ
minimizes the expected length of a rule starting from the worst possible node. For a
tree, µ is concentrated on the foci of G:

Proposition 1.7. If the node a is the unique focus of G = (V,E) then µ is the
singleton distribution on the focus a. If the adjacent nodes a and b are the foci of G
then

µi =


1

2|E| (H(b′, b)−H(a′, b)), i = a
1

2|E| (H(a′, a)−H(b′, a)), i = b

0, otherwise.

where H(i′, i) = maxj∈V H(j, i).
Another mixing measure with central properties is Tbestmix = mini∈V H(i, π). The

node achieving Tbestmix is the best possible starting node for achieving the stationary
distribution. This formulation is dual in some sense to that of equation (1.1). As
expected, the foci of the tree are central for this extremal problem.

Theorem 1.8. The quantity Tbestmix = mini∈V H(i, π) is achieved by a focus of
the tree. Specifically, if H(a′, b) < H(b′, a) then node a uniquely achieves Tbestmix, if
H(a′, b) > H(b′, a) then node b uniquely achieves Tbestmix and if H(a′, b) = H(b′, a)
then Tbestmix is achieved by both a and b.

The broom graphs B2,2, B2,3 and B4,3 in figure 1 show that all three possibilities
do occur.

Consider another mixing measure similar to the forget time. The start-independent
time of a distribution σ is Tsi(σ) = minτ

∑
i∈V σiH(i, τ) where the minimum is taken

over all target distributions. For a walk started from σ, Tsi(σ) is the minimum ex-
pected time to obtain a sample (from some distribution) that is independent of the
initial node of the walk (which was drawn from σ). We may interpret Tsi(σ) as the
fastest way to “forget” that we started our walk from a node drawn from σ. A natural
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Fig. 1.1. Trees with different foci achieving Tbestmix. (a) H(a′, b) = H(b′, a) so Tbestmix =
H(a, π) = H(b, π). (b) H(a′, b) < H(b′, a) so Tbestmix = H(a, π). (c) H(a′, b) > H(b′, a) so
Tbestmix = H(b, π).

choice for our initial distribution is the stationary distribution. For a tree, the target
distribution achieving Tsi(π) is central in an average sense and indeed the optimal
target is concentrated on the barycenter.

Proposition 1.9. If c is a barycenter of the tree G then

Tsi(π) = min
τ

∑
k∈V

πkH(k, τ) =
∑
k∈V

πkH(k, c) = H(π, c).

We define the start-independent time of a graph to be Tsi = maxσ Tsi(σ) where
the maximum is taken over all initial distributions. For a tree, the target distribution
achieving Tsi is central in an extremal sense, and indeed Tsi can be achieved by taking
either focus as a target. Furthermore, Tsi = Tforget.

Theorem 1.10. For a tree G, we have Tsi = Tforget. Moreover, if G has a unique
focus a, then there exists a distribution φ such that Tsi = H(φ, a). If G has two foci
a and b then there exists a distribution φ such that Tsi = H(φ, a) = H(φ, b).

It is an open question how Tsi(π) and Tsi compare to the other mixing measures
for general graphs.

2. Preliminaries.

2.1. Random walks. Given an undirected, connected graph G = (V,E) a ran-
dom walk on G is a sequence of nodes (w0, w1, . . . , wt, . . .) such that the node wt
at time t is chosen uniformly from the neighbors of wt−1. For non-bipartite G, as
t tends to infinity the distribution of the node wt tends to the so called stationary
distribution π where πi = d(i)/2|E| and d(i) is the degree of i. For bipartite G,
we have convergence if we consider a “lazy walk” in which at each step we stay at
the current node with probability 1/2. For simplicity of exposition we will consider
non-lazy walks (laziness simply doubles the expected length of our walks).

For two nodes i, j, the hitting time H(i, j) is the expected length of a walk from
i to j. The expected number of steps before a walk started at i returns to i is

Ret(i) =
1
πi
.(2.1)

For any undirected graph G, Coppersmith, Tetali and Winkler [5] define a central
node c of G to be a node which satisfies H(i, c) ≤ H(c, i) for all i. The existence of
such a node for an undirected graph follows from their cycle reversing identity

H(i, j) +H(j, k) +H(k, i) = H(i, k) +H(k, j) +H(j, i).(2.2)
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The “random target identity” (c.f. [8], equation (3.3)) states that
∑
j∈V πjH(i, j) is

independent of the initial node i. Multiplying equation (2.2) by πk, summing over all
k and using this identity gives∑

k∈V

πkH(k, i) +H(i, j) =
∑
k∈V

πkH(k, j) +H(j, i)(2.3)

for any nodes i, j.

2.2. Hitting times for trees. We give a hitting time formula for trees that is
equivalent to those found in [4], [7] and [11]. For adjacent nodes i and j,

H(i, j) =
∑
k∈Vi:j

d(k) = 2|E|
∑
k∈Vi:j

πk = 2|E|π(Vi:j).(2.4)

Indeed, let G′ be the induced subtree on the nodes Vi:j ∪ {j}. Let d′(k) be the G′-
degree of k and HG′(i, j) be the hitting time from i to j for this graph. By equation
(2.1), H(i, j) = HG′(i, j) = RetG′(j)− 1 =

∑
k∈G′ d

′(k)− 1 =
∑
k∈Vi:j d(k).

If i and j are neighbors then equation (2.4) immediately gives

H(i, j) +H(j, i) = 2|E|.(2.5)

Furthermore, we can determine a hitting time formula for the general case. Define
`(i, k; j) = 1

2 (d(i, j) + d(k, j)− d(i, k)), the length of the intersection of the (i, j)-path
and the (k, j)-path. This function is symmetric in i and k and is zero if and only if
i = j, k = j, or the nodes i and k are in different connected components of G \ {j}.
Assume d(i, j) = r and the (i, j)-path is given by (i = i0, i1, i2, . . . , ir = j). Using
equation (2.4) and `(i, k; j) yields

H(i, j) =
r−1∑
t=0

H(it, it+1) =
∑
k∈V

`(i, k; j)d(k).(2.6)

Indeed, we can use formula (2.6) to recover formula (1.3) for hitting times on the
path.

2.3. Stopping rules. We briefly summarize some results of Lovász and Winkler
[9]. Let V ∗ be the space of finite walks on V , i.e. the set of finite strings w =
(w0, w1, w2, . . . , wt), wi ∈ V and wi adjacent to wi−1. For a given initial distribution
σ, the probability of w being the walk after t steps is

Pr(w) = σw0

t−1∏
i=0

pwiwi+1 .

A stopping rule Γ is a map from V ∗ to [0, 1] such that Γ(w) is the probability of
continuing given that w is the walk so far observed. We assume that with probability
1 the rule stops the walk in a finite number of steps.

Given another distribution τ on V , the access time H(σ, τ) is the minimum ex-
pected length of a stopping rule Γ that produces τ when started at σ. We say Γ is
optimal if it achieves this minimum. For example, in the case that σ = τ are both sin-
gleton distributions on the node i, the rule “take no steps” is an optimal stopping rule
with expected length 0, while the rule “walk until you return to i” is a non-optimal
stopping rule with expected length Ret(i).
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Optimal stopping rules exist for any pair σ, τ of distributions and the access time
H(σ, τ) has many useful algebraic properties. When σ and τ are concentrated on
nodes i and j respectively (we write σ = i, τ = j), the access time H(i, j) is the hitting
time from i to j. Clearly, H(σ, j) =

∑
i∈V σiH(i, j) and H(σ, τ) ≤

∑
i∈V σiH(i, τ).

The latter inequality is usually strict for non-singleton distributions. For example,
0 = H(π, π) <

∑
k∈V πkH(k, π) = Treset.

Given a stopping rule Γ from σ to τ , the exit frequency xi(Γ) is the expected
number of times the walk leaves node i before halting. Exit frequencies partition the
expected length of the walk: E(Γ) =

∑
k∈V xk(Γ). Exit frequencies are fundamental

to virtually all access time results. A key observation, due to Pitman [13], is the
“conservation equation” ∑

i∈V
pijxi(Γ)− xj(Γ) = τj − σj .(2.7)

It follows that the exit frequencies for two rules from σ to τ differ by Kπi where K is
the difference between the expected lengths of these rules. Hence the distributions σ
and τ uniquely determine the exit frequencies for an optimal stopping rule between
them and we denote these optimal exit frequencies by xi(σ, τ). Moreover,

Γ is an optimal stopping rule ⇐⇒ ∃k ∈ V, xk(Γ) = 0.(2.8)

Otherwise a rule with exit frequencies xk(Γ)− πk mini∈V (xi(Γ)/πi) will have strictly
smaller expected length while also satisfying equation (2.7). (See [9] for multiple
ways to construct stopping rules from a given set of desired exit frequencies.) When
xk(Γ) = 0, we call the node k a (σ, τ)-halting state, or simply a halting state when the
initial and target distributions are clear. The presence of a halting state is the single
most useful criterion for determining whether a given rule is optimal. Note that an
optimal rule may have multiple halting states, but we need only identify one such
state to ensure that a rule is optimal.

Any three distributions σ, τ and ρ satisfy the “triangle inequality”

H(σ, ρ) ≤ H(σ, τ) +H(τ, ρ).(2.9)

The right hand side of this equation is the expected length of the composite rule
that first follows an optimal stopping rule from σ to τ and then follows an optimal
stopping rule from τ to ρ. The exit frequency for node k of this composite rule is
xk(σ, τ) + xk(τ, ρ). We have equality in equation (2.9) if and only if this composite
rule is optimal. In particular, there must be some node k such that xk(σ, τ) = 0
and xk(τ, ρ) = 0. Considering the case where ρ is a singleton distribution, H(σ, j) ≤
H(σ, τ) +H(τ, j) for any node j and equality holds if and only if j is a halting state
for an optimal rule from σ to τ . Hence

H(σ, τ) = max
j∈V

(H(σ, j)−H(τ, j)).(2.10)

In the special case σ = i and τ = π we have a particularly nice characterization due
to the combination of equations (2.3) and (2.10):

j is an (i, π)-halting state⇐⇒ H(j, i) = max
k∈V

H(k, i).(2.11)

Let j = i′ denote such an i-pessimal node. We can reformulate this observation as

H(i, π) = H(i′, i)−H(π, i).(2.12)
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2.3.1. Example: mixing walks on P3. We describe some optimal stopping
rules from singleton distributions on P3 = (v0, v1, v2, v3) to π = (1/6, 1/3, 1/3, 1/6).
First we construct an optimal mixing rule Γ(v0, π). By equation (2.8), a rule is
optimal when it has a halting state. Equation (2.11) identifies v3 as the unique halting
state. Let Γ(v0, π) be the rule “choose a target node according to π and walk to that
node.” Since v3 is never exited by this rule, Γ(v0, π) is optimal with expected length
H(v0, π) = |Γ(v0, π)| = 1

6H(v0, v0) + 1
3H(v0, v1) + 1

3H(v0, v2) + 1
6H(v0, v3) = 19/6 by

equation (1.3).
We now consider starting at the node v1. Equation (2.8) again identifies v3 as

the unique halting state. For this starting node, choosing our target ahead of time
does not result in an optimal rule: there is a nonzero chance of reaching v3 before
reaching v0 (so v3 would not be a halting state). Instead our heuristic is to try to stop
as quickly as possible. The rule Γ(v1, π) is: “at t = 0, take a step with probability
2/3 (and otherwise halt the walk for good). If the walk is still active at t = 1 then we
are at either v0 or v2. If we are at v2 then halt the walk. If we are at v0 then stop
with probability 1/2 and otherwise keep walking until you reach v3.” Let us describe
the behavior of this rule. At time t = 0, our distribution is (0, 1, 0, 0). At time t = 1,
our distribution is (1/3, 1/3, 1/3, 0). Note that at time t = 1 our walk continues to be
active only when we are at v0. In this case we halt (with probability 1/2) or continue
walking (with probability 1/2) until we reach v3. When the rule finally terminates,
our distribution is (1/6, 1/3, 1/3, 1/6) and v3 is a halting state. The expected length
of this optimal rule is H(v1, π) = |Γ(v1, π)| = 2

3 + 1
6H(v0, v3) = 13/6.

Finally, we consider another optimal (v0, π)-rule. Let Γ′(v0, π) be the rule “take
one step and then follow Γ(v1, π).” Clearly |Γ′(v0, π)| = 1 + |Γ(v1, π)| = 19/6 =
H(v0, π) and indeed v3 is a halting state for this composite rule. Interestingly, both
the rules Γ(v0, π) and Γ(v1, π) are optimal but they are clearly distinct: Γ′(v0, π)
always exits v0 at t = 0 while Γ(v0, π) halts at t = 0 with probabilty 1/6.

2.4. Mixing measures. Stopping rules provide a number of parameterless mix-
ing measures. We define the mixing time Tmix to be the expected length of an opti-
mal mixing rule starting from the worst initial node: Tmix = maxi∈V H(i, π). A node
achieving this maximum is called mixing pessimal. The forget time Tforget is the small-
est t such that there exists a distribution µ such that for every starting node, the ex-
pected time to attain µ via an optimal rule is at most t: Tforget = minτ maxi∈V H(i, τ).
Theorem 4 (and the subsequent remark) in [10] establishes that the forget time is at-
tained by a unique distribution given by

µi = πi

1 +
∑
j∈V

pijH(j, π)−H(i, π)

 .(2.13)

Furthermore, if a node is mixing pessimal then it is also pessimal for µ and every
mixing pessimal node is a halting state for an optimal rule from µ to π.

The reset time Treset =
∑
i∈V πiH(i, π) can be viewed as an average mixing time.

Theorem 1 in [10] establishes the remarkable equality

Tforget = Treset(2.14)

for a random walk on an undirected graph. Moreover, for an undirected graph we
have Treset ≤ Tmix ≤ 4Treset (see [2] corollary 8 and its subsequent remarks).
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2.5. Start-independence. The following independence condition arises in ap-
plications of random walks. Let Γ be a stopping rule from σ to τ and let w0, w1, . . . , wT
be a walk halted by Γ at time T . The support of σ, denoted Sσ, is the the set of nodes
i such that σi > 0. We associate a conditional distribution τ (i) to each i ∈ Sσ given
by τ

(i)
k = Pr{wT = k|w0 = i}. In other words, τ (i)

k is the probability that Γ stops
the walk at k given that the walk started at i (which was drawn from σ). Clearly∑
i∈Sσ σiτ

(i) = τ and we call the set {τ (i)}i∈Sσ the Γ-decomposition of τ .
The rule Γ is start-independent if τ (i) = τ for all i ∈ Sσ. The node at which

a start-independent rule halts is independent of the initial node. Start-independent
rules always exist: the rule “draw w0 from σ and walk optimally from w0 to τ” is a
start-independent rule of expected length

∑
i∈V σiH(i, τ).

While start-independent rules are rarely optimal (for example take σ = τ), they
arise naturally in applications requiring multiple independent samples from the sta-
tionary distribution of some state space. We obtain these samples by following an
optimal mixing rule, accepting the current state, and then starting a new optimal
mixing walk from this state. In this setting, Treset is the expected length of a min-
imal start-independent rule from π to π. (See [3] for an extremal result concerning
start-independent rules whose initial and target distributions are identical.)

We define the start-independent time of a distribution σ to be the minimum
expected length of a start-independent rule with initial distribution σ:

Tsi(σ) = min
τ

∑
i∈V

σiH(i, τ)

A quantity of natural interest is Tsi(π), the start-independent time for the stationary
distribution. We would also like to determine the extremal behavior of Tsi(σ). The
start-independent time of any singleton distribution is zero, so only the maximum
case is nontrivial. We define the start-independent time of the graph to be

Tsi = max
σ

Tsi(σ) = max
σ

min
τ

∑
i∈V

σiH(i, τ).

3. The average and extremal centers. We begin with our characterization
of the barycenter of the tree.

Proof of proposition 1.1. The equivalence of (b) and (c) follows from equation
(2.3): H(i, c) ≤ H(c, i) for all i if and only if

∑
k∈V πkH(k, c) ≤

∑
k∈V πkH(k, i) for

all i.
We show that (c) and (d) are equivalent. Assume π(Vi:c) ≤ 1/2 for every node

i adjacent to c. For j ∈ Vi:c, H(j, c) ≤ d(j, c)
∑
k∈Vi:c d(k) ≤ d(c, j)

∑
k∈Vc:j d(k) ≤

H(c, j) by equation (2.6), so c is the central node. Now assume that c is the central
node and that π(Vi:c) > 1/2. Then H(i, c) =

∑
k∈Vi:c d(k) >

∑
k∈Vc:i d(k) = H(c, i), a

contradiction. If π(Vi:c) = 1/2 for some neighbor i of c then i is also a central node.
Finally we prove the equivalence of (a) and (d). For any adjacent nodes i and j,

we have ∑
k∈V

d(k, i) =
∑
k∈V

d(k, j)− |Vi:j |+ |Vj:i|(3.1)

and

π(Vi:j) =
∑
k∈Vi:j

πk =
2|Vi:j | − 1

2|E|
.(3.2)
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The node j has a neighbor i with π(Vi:j) > 1/2 > π(Vj:i) if and only if |Vi:j | > |Vj:i|
(by equation (3.2)) if and only if

∑
k∈V d(k, i) <

∑
k∈V d(k, j) (by equation (3.1)) if

and only if j is not the barycenter.
Proof of proposition 1.2. We divide the proof into two cases, depending on whether

G has a focus a such that multiple subtrees of G\{a} contain an a-pessimal node.
Case 1. Let a′ and a′′ be a-pessimal nodes contained in different subtrees of

G\{a}. Any node u 6= a is separated by a from at least one of a′, a′′. Without loss of
generality, assume that a is on the unique (a′, u)-path. Then H(u′, u) ≥ H(a′, u) =
H(a′, a) + H(a, u) > H(a′, a) and therefore u is not a focus of the tree. Hence a is
the unique focus of G.

Case 2. Suppose that a is a focus of G with all a-pessimal nodes in a single
component of G\{a}. Let b be the unique neighbor of a in this component. By
definition, b is a focus of G and H(b′, b) ≥ H(a′, a). For any node u ∈ Va:b, H(u′, u) ≥
H(a′, u) = H(a′, a) + H(a, u) > H(a′, a), so u ∈ Va:b is not a focus of G. The b-
pessimal node b′ must lie in Va:b. Indeed, for any node w ∈ Vb:a, H(w, b) < H(w, a) ≤
H(a′, a) ≤ H(b′, b). Similarly a′ ∈ Vb:a. Now considering v ∈ Vb:a\{b} we have
H(v′, v) ≥ H(b′, v) = H(b′, b) + H(b, v) > H(b′, b) ≥ H(a′, a), so v is not a focus of
G.

The following corollary is immediate from the proof.
Corollary 3.1. If G is focal with unique focus a then there are multiple subtrees

of G\{a} containing a-pessimal nodes. If G is bifocal with foci a, b then each a-
pessimal node is contained in Vb:a and each b-pessimal node is contained in Va:b.

The barycenter is the average center for random walks on trees, so it is natural
to compare H(c, π) and Treset = Tforget. Mixing from the barycenter never takes more
than twice as long as the average mixing time.

Proof of proposition 1.3. Let u be the unique neighbor of c on the path from c
to a c-pessimal node c′. By proposition 1.1, π(Vc:u) ≥ 1/2. For any node i ∈ Vc:u
we have H(i, π) = H(i, c) +H(c, π). Indeed, c′ ∈ Vu:c will also be i-pessimal and the
composite rule corresponding to the right hand side preserves c′ as a halting state.
So equation (2.11) guarantees that this rule is optimal. Therefore

Treset ≥
∑
i∈Vc:u

πiH(i, π) =
∑
i∈Vc:u

πi (H(i, c) +H(c, π)) ≥ π(Vc:u)H(c, π) ≥ 1
2
H(c, π).

For a star, we have H(c, π) = 1/2 and Treset = Tforget = 1, so this bound is tight.

There are trees for which H(c, π) > Treset. Consider a broom graph B4k,4k with
path nodes (c = v0, v1, . . . v4k). Some simple calculations using equation (2.6) show
that vk and vk−1 are the foci of B4k,4k. The forget time (and hence the reset time by
equation (2.14)) is Tforget = H(v4k, µ) < H(v4k, vk−1) = (3k + 1)2. Using equations
(2.6) and (2.12), the expected time to mix from the barycenter is H(c, π) = H(c, c′)−
H(π, c′) = (64k2 − 1)/6 which is strictly greater than (3k + 1)2 for k ≥ 4. Of course,
(64k2 − 1)/6 < 2(3k)2 = 2H(v4k, vk) < 2Tforget as stipulated by proposition 1.3.

On the other hand, H(c, π) may be markedly smaller than the forget time (and
hence the reset time) of the tree. Consider an m-ary tree of depth r with root c. Of
course c is the center, the barycenter and the focus of this tree. We adopt the following
notation: Sk = {i|d(i, c) = k} is the set of all nodes at level k. Let c = i0, i1, . . . , ir be
a path from c to a leaf ir. The expected behavior of the walk at a node only depends
on the level of the node, so we may use ik as a representative for all nodes in Sk. A
node is halting for this mixing walk if and only if it lies in Sr. We explicitly calculate
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H(c, π) = H(ir, c)−H(π, c) as per equation (2.12). Counting the degrees level-wise,
the total number of edges in an m-ary tree of depth r is

1
2

(
m+ (m+ 1)

r−1∑
k=1

mk +mr

)
=
m(mr − 1)
m− 1

.

Proof of theorem 1.4. We start by showing that

H(ir, ir−s) =
2ms+1 − sm2 − 2m+ s

(m− 1)2
.(3.3)

Let G′ be the connected component of G\{ir−s} containing ir. We partition V (G′)∪
{ir−s} into sets Tk = {j|`(ir, j; ir−s) = k} so that

H(ir, ir−s) =
s∑

k=1

k
∑
j∈Tk

d(j)

by equation (2.6). We have Ts = {ir} and for 1 ≤ k ≤ s− 1, Tk consists of the node
ir−s+k connected to m− 1 copies of m-ary trees of depth s− k − 1. Hence,

∑
j∈Tk

d(j) = (m+ 1) + (m− 1)
(

1 +
2m(ms−k−1 − 1)

m− 1

)
= 2ms−k

for 1 ≤ k ≤ s− 1 so that

H(ir, ir−s) = s+
s−1∑
k=1

k(2ms−k) = s+ 2
s−1∑
j=1

(s− j)mj

= s+ 2s
s−1∑
j=1

mj − 2
s−1∑
j=1

jmj =
2ms+1 − sm2 − 2m+ s

(m− 1)2
.

By equation (2.12),

H(c, π) = H(ir, c)−H(π, c) = H(ir, c)−
∑
j∈V

πjH(j, c) = H(ir, c)−
r∑

k=0

π(Sk)H(ik, c)

=
r∑

k=0

π(Sk) ((H(ir, ik) +H(ik, c))−H(ik, c)) =
r∑

k=0

π(Sk)H(ir, ik)

=
m− 1

2m(mr − 1)

(
mH(ir, i0) +

r−1∑
k=1

mk(m+ 1)H(ir, ir−(r−k)) +mrH(ir, ir)

)
.

Using equation (3.3) and simplifying (we omit the details) yields the mixing result of
equation (1.4).

We can now quickly determine the reset time of an m-ary tree. As per equation
(2.14), Treset = Tforget. By symmetry, the root is the unique focus of them-ary tree and
Tforget = H(ir, i0). Formula (3.3) for s = r gives equation (1.5). For completeness, we
note that Tmix = H(ir, π) = H(ir, i0)+H(i0, π) = Tforget+H(c, π) = Treset+H(c, π) =
Θ(mr−1).
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4. The foci of a distribution. Recall that the node k is (i, τ)-halting when
xk(i, τ) = 0. Two nodes i, j have a common halting state for τ when there exists a node
k such that xk(i, τ) = 0 and xk(j, τ) = 0. A focus of a distribution τ on the tree G is a
node u for which the rule “take one step from u and then follow an optimal rule from
this random neighbor of u to τ” is not optimal, i.e. H(u, τ) < 1 +

∑
i∈V puiH(i, τ).

This is equivalent to saying that there is no node that is simultaneously τ -halting for
u and all of its neighbors.

For example, the focus for the singleton distribution τ = u is the node u. Consid-
ering mixing walks, equation (2.11) states that k is a π-halting state for i if and only
if H(k, i) = maxj∈V H(j, i) = H(i′, i). Hence for a path of even length the unique
center is the only π-focus, and for a path of odd length, the two central nodes are the
π-foci. Also, the center of a star graph is the only π-focus.

We now prove Theorem 1.5, which states that for any tree G, every τ has one
focus or two adjacent foci. Fixing τ , let i∗ denote a halting state for an optimal
stopping rule from i to τ .

Lemma 4.1. When i∗ is an (i, τ)-halting state then i∗ is a (j, τ)-halting state
whenever j and i∗ are in different subtrees of G\{i}.

Proof. We are guaranteed that i is on the unique (j, i∗)-path. Consider the
composite rule “walk from j until you reach i and then follow an optimal rule from i
to τ .” The kth exit frequency of this composite rule is xk(j, i)+xk(i, τ). In particular
xi∗(j, i) + xi∗(i, τ) = 0 so i∗ is a halting state. By equation (2.8) this composite rule
is therefore optimal: H(j, τ) = H(j, i) +H(i, τ).

Lemma 4.2. If (j1, . . . , i1, i2, . . . , j2) is a path in the tree G then the nodes j1, j2
cannot each be τ -halting states for both of the nodes i1, i2.

Proof. Assume the conclusion is false. Equation (2.10) yieldsH(ik, τ) = H(ik, j1)−
H(τ, j1) = H(ik, j2) − H(τ, j2) for k = 1, 2 and therefore −H(i2, i1) = H(i1, j1) −
H(i2, j1) = H(i1, τ)−H(i2, τ) = H(i1, j2)−H(i2, j2) = H(i1, i2), a contradiction.

Proof of theorem 1.5. The case when τ is a singleton is trivial, so assume τ is not
a singleton.

Case 1: There exists an edge uv such that u and v do not share a halting state
for τ . Note that u∗ ∈ Vv:u and v∗ ∈ Vu:v. Consider a set of optimal rules from
the singletons to τ. Lemma 4.1 ensures that each node in Vu:v has exactly the same
τ -halting states and the nodes in Vv:u all have the same τ -halting states. Therefore
no node in V \{u, v} can be a focus for τ .

We claim that u is a focus of τ . Indeed, we show that the composite rule Γ from
u to τ given by “take one step and then follow an optimal rule from that node to τ” is
not optimal by proving that xk(Γ) > 0 for all k ∈ V . Clearly u is not a halting state
for Γ. If u is a leaf, then after our first step, we must be at v. Since every (v, τ)-halting
state is contained in Vu:v = {u}, we must have xk(Γ) > 0 for all k ∈ V . When u is
not a leaf, let i ∈ Vu:v be a neighbor of u. Then xk(Γ) ≥ 1

d(u) (xk(v, τ) + xk(i, τ)) > 0.
Indeed, after our first step from u, we are at each of v, i with probability 1/d(u).
Lemma 4.2 ensures that no node is simultaneously halting for both v and u. Lemma
4.1 states that i has the same halting states as u. Combining these observations
yields xk(v, τ) +xk(i, τ) > 0 for every node k. Γ is not optimal by equation (2.8) and
therefore u is a focus of τ . By a similar proof, v is also a focus of τ .

Case 2: Every neighboring pair of nodes share a τ -halting state. Since τ is not
a singleton, there exists a path of the form (u∗, . . . , i, u, . . . , i∗) where u∗ is a halting
state for u but not for i, and u separates i from all of its τ -halting states. If u is
not a focus, then the neighbors of u have a common halting state j∗. Let j 6= i be
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the neighbor of u on the (u, j∗)-path. The path (u∗, . . . , u, j, . . . , j∗) is of the form
forbidden by claim 3, a contradiction. So u must be a focus and u is unique. Indeed,
u shares a τ -halting state with each of its neighbors, so u must have a halting state
in at least two components of G\{u}. If there were another focus v, this would again
imply the existence of a path forbidden by lemma 4.2.

Proof of proposition 1.6. Case 1: G is bifocal with foci a, b. By corollary 3.1,
a′ ∈ Vb:a and b′ ∈ Va:b and by equation (2.11), xa′(a, π) = 0 and xb′(b, π) = 0. The
argument is now identical to case 1 in the proof of theorem 1.5 with τ = π, u = a, u∗ =
a′, v = b, v∗ = b′.

Case 2: G is focal with focus a. Corollary 3.1 states that at least two subtrees of
G\{a} contain a-pessimal nodes. By equation (2.11), these nodes are (a, π)-halting
states. Lemma 4.1 now ensures every neighboring pair of nodes share a π-halting
state, so a is the only potential π-focus. From this point, the argument is identical to
the end of case 2 in the proof of theorem 1.5 with τ = π and u = a.

Proof of proposition 1.7. By equation (2.13), when i is not a focus of π we have
µi = 0, If G is focal then µ is the singleton distribution on a. For G bifocal, rewrite
equation (2.13) as

µi = πi

1 +
∑
j∈V

pij(H(j, π)−H(i, π))

 .

When i ∈ Va:b is a neighbor of a, theorem 1.5 shows H(i, π) − H(a, π) = H(i, a).
Equation (2.4) gives∑

i∈Va:b

pai(H(i, π)−H(a, π)) =
∑
i∈Va:b

paiH(i, a) =
1

d(a)
(H(a, b)− d(a)).

Considering the final neighbor b, equations (2.12) and (2.3) give

H(b, π)−H(a, π) = H(b′, b)−H(π, b)−H(a′, a) +H(π, a)
= H(b′, a) +H(a, b)−H(a′, b)−H(b, a) +H(π, a)−H(π, b)
= H(b′, a)−H(a′, b)

Thus our formula for µa becomes

µa =
d(a)
2|E|

[
1 +

1
d(a)

(H(a, b)− d(a) +H(b′, a)−H(a′, b))
]

=
1

2|E|
(H(a, b) +H(b′, a)−H(a′, b)) =

1
2|E|

(H(b′, b)−H(a′, b)) .

We can calculate µb directly as above, or use µb = 1− µa and equation (2.5).
Corollary 4.3. For a focal tree, Tforget = H(a′, a). For a bifocal tree,

Tforget = H(a′, µ) = H(b′, µ)

=
1

2|E|
(H(a, b)H(b, a) +H(a, b)H(a′, b) +H(b, a)H(b′, a)).

Proof. Since a′ and b′ are mixing pessimal, Tforget = H(a′, µ) = H(b′, µ) and
the first statement is obvious. If G is bifocal, the following stopping rule is optimal
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from a′ to µ: walk until you hit b, then stop with probability µb and walk to a with
probability µa. Hence, H(a′, µ) = H(a′, b) + µaH(b, a) and

Tforget = H(a′, b) +
H(b, a)

2|E|
(H(b′, b)−H(a′, b)).

Equation (2.5) completes the proof.
Proof of theorem 1.8. We quickly narrow our search down to the foci of the tree.

Recall that a stopping rule is optimal if and only if it has a halting state. Lovász and
Winkler [10] show that every mixing pessimal node is a halting state for an optimal
rule from µ to π. Hence on a tree, both a′ and b′ are halting states for an optimal
rule from µ to π. Therefore, for any node i, the rule “follow an optimal rule from i
to the forget distribution µ and then follow an optimal rule from µ to π” has either
a′ or b′ as a halting state. This rule is optimal and H(i, π) = H(i, µ) +H(µ, π). We
may minimize H(i, µ) rather than H(i, π), which is clearly minimized by a focus of
the tree.

If G has a unique focus, there is nothing to prove. Assume that G is bifocal with
primary focus a and secondary focus b. Then

H(a, µ)−H(b, µ) = µbH(a, b)−µaH(b, a) =
1

2|E|
(H(a′, b)−H(b′, a))(H(a, b)+H(b, a)).

Thus H(a, µ) ≥ H(b, µ) if and only if H(a′, b) ≥ H(b′, a).

5. Start-independent times. Start-independent stopping rules also identify
central nodes: we now prove proposition 1.9 and theorem 1.10, which show that the
target distributions achieving Tsi(π) and Tsi are concentrated on a barycenter and the
foci of the tree, respectively. The following lemma restricts our attention to singleton
targets.

Lemma 5.1. Let σ and τ be distributions on the tree G. If τ has only one
focus, denote this node by u. Otherwise let the foci u, v of τ satisfy σ(Vu:v)π(Vu:v) ≥
σ(Vv:u)π(Vv:u). Then∑

k∈V

σkH(k, τ) ≥
∑
k∈V

σkH(k, u) = H(σ, u).

Proof. If u is the only focus for τ then
∑
k∈V σkH(k, τ) =

∑
k∈V σk(H(k, u) +

H(u, τ)) ≥
∑
k∈V σkH(k, u). If τ has two foci with σ(Vu:v)π(Vu:v) ≥ σ(Vv:u)π(Vv:u),

equation (2.4) implies that σ(Vu:v)H(u, v) ≥ σ(Vv:u)H(v, u). By theorem 1.5,∑
k∈V

σkH(k, τ) =
∑

k∈Vu:v

σk(H(k, u) +H(u, τ)) +
∑

k∈Vv:u

σk(H(k, v) +H(v, τ))

=
∑

k∈Vu:v

σkH(k, u) +
∑

k∈Vv:u

σkH(k, v) + σ(Vu:v)H(u, τ) + σ(Vv:u)H(v, τ)

=
∑
k∈V

σkH(k, u)− σ(Vv:u)H(v, u) + σ(Vu:v)H(u, τ) + σ(Vv:u)H(v, τ).

For any rule from u to τ , we must step from u to Vv:u with probability τ(Vv:u)
before halting, hence H(u, τ) ≥ τ(Vv:u)H(u, v). Likewise, H(v, τ) ≥ τ(Vu:v)H(v, u).
Therefore

σ(Vu:v)H(u, τ) + σ(Vv:u)H(v, τ) ≥ σ(Vu:v)τ(Vv:u)H(u, v) + σ(Vv:u)τ(Vu:v)H(v, u)
≥ σ(Vv:u)H(v, u)
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so
∑
k∈V σkH(k, τ) ≥

∑
k∈V σkH(k, u).

Proof of proposition 1.9. Taking σ = π in lemma 5.1, a singleton target achieves
Tsi(π). Proposition 1.1 shows that Tsi(π) = mini∈V

∑
k∈V πkH(k, i) = mini∈V H(π, i) =

H(π, c).
Obviously Tsi(π) ≤ Treset and in fact Tsi(π) can be arbitrarily small in comparison.

Consider the tree consisting of a path of length 2k with k4 leaves connected to the
central node c. The focus, center and barycenter of G are all located at c, so the
forget distribution is concentrated on this central node. Tforget = k2 while H(π, c)
becomes arbitrarily close to 1/2 for large k.

On the other hand, theorem 1.10 states that the forget time and the start-
independent time of a tree are identical. The theorem is clearly true for the path
on two nodes, so we restrict our proof to trees on three or more nodes. We make
the important observation that Tsi need not be achieved by a unique pair of distri-
butions. For example, consider a star graph with n leaves. Clearly Tsi ≤ 1 since
we may always choose the central node c as our target. For any distribution σ con-
centrated on the leaf set such that σi ≤ (2n − 1)/2n for every node i, we have
Tsi = minj∈V H(σ, j) = H(σ, c) = 1.

We prove theorem 1.10 by constructing a particular initial distribution φ concen-
trated on two leaves such that minj∈V H(φ, j) = Tsi. Once we have identified such a
φ, we show that we may choose the target node to be a focus of G.

Lemma 5.2. Given a distribution σ, the node u satisfies H(σ, u) = minj∈V H(σ, j)
if and only if for each neighbor v of u,

σ(Vv:u)H(v, u) ≤ σ(Vu:v)H(u, v)(5.1)

or equivalently

σ(Vv:u) ≤ H(u, v)
2|E|

and σ(Vv:u) ≥ H(v, u)
2|E|

.(5.2)

We have equality if and only if H(σ, u) = H(σ, v) so that v is also a best target for σ.
Furthermore, at most one neighbor of u can satisfy equation (5.1) with equality.

Proof. For any neighbor v of u,

H(σ, v) =
∑

k∈Vu:v

σkH(k, u) + σ(Vu:v)H(u, v) +
∑

k∈Vv:u

σkH(k, v).

We have σ(Vv:u)H(v, u) ≤ σ(Vu:v)H(u, v) if and only if

H(σ, v) ≥
∑

k∈Vv:u

σkH(k, u) + σ(Vv:u)H(v, u) +
∑

k∈Vv:u

σkH(k, v) = H(σ, u).

Furthermore, equality holds in the first if and only if equality holds in the second.
We find the equivalence of equations (5.1) and (5.2) by rewriting σ(Vv:u)H(v, u) ≤
σ(Vu:v)H(u, v) = (1 − σ(Vv:u))H(u, v), solving for σ(Vv:u) and then using equation
(2.5).

Now suppose that we have equality in equation (5.2) for two distinct u-neighbors
v, w. Then

1 ≥ σ(Vv:u) + σ(Vw:u) =
1

2|E|
(H(u, v) +H(u,w)) >

1
2|E|

(H(u, v) +H(v, u)) = 1,
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a contradiction (where the inequality follows from equation (2.4)).
We employ the following terminology for the remainder of the section. Let φ be

a distribution, let Sφ = {v|φv > 0} ⊂ V and let u be a node such that H(φ, u) =
minj∈V H(φ, j) = Tsi. Let v1, v2, . . . , vd(u) be the neighbors of u and let wi ∈ Vvi:u be
a leaf such that H(wi, u) = maxj∈Vvi:u H(j, u) for 1 ≤ i ≤ d(u).

Proof of theorem 1.10. We first prove the result for stars K1,k, k ≥ 0. When
k = 0 the result is trivial. Suppose that G = K1,1 is the path on vertices u, v. Then
maxσ minj H(σ, j) = maxσ min{σu, σv} = 1/2. This value is achieved uniquely by
taking σ = (1/2, 1/2) and taking either node as the target.

Suppose that G is the star K1,k, k ≥ 2 with center c. When φ is divided
evenly between two leaves u, v then minj H(φ, j) = H(φ, c) = 1. We now show
that minj H(σ, j) ≥ 1 for any distribution σ. Note that minj H(σ, j) ≤ H(σ, c) =
1−σc ≤ 1. So assume that a leaf w is the best target for σ. By lemma 5.2, σ(Vc:w) ≤
H(w, c)/2|E| = 1/2k. In order to maximize H(σ,w) we must set σw = (2k − 1)/2k
and σv = 1/2k for some leaf v 6= w. In this case H(σ,w) = 1

2kH(v, w) = 1. Therefore
maxσ minj H(σ, j) = 1 for every star.

Now assume that G is a tree on 4 or more vertices and that G is not a star. Let∑
i∈V φiH(i, u) = Tsi.

Claim 1: The node u is not a leaf.
Assume that u is a leaf and let v be its unique neighbor. Using equation (5.2),

our best choice for the initial distribution is φu = 1/2|E| and φu′ = 1 − φu. In this
case, H(φ, u) = H(φ, v) by lemma 5.2, so v is also a minimizing target. We note that
since G is not a star, H(u′, v) > 1. Lemma 5.2 also guarantees that the remaining v-
neighbors have a strict equality in equation (5.1). Therefore we can shift some weight
from u to u′ while still keeping v as the optimal target. Specifically, there exists some
ε > 0 such that the distribution φ′ defined by φ′u = φu − ε, φ′u′ = φu′ + ε and φ′i = 0
otherwise satisfies φ′(Vw:v)H(w, v) < φ′(Vv:w)H(v, w) for every v-neighbor w. This
ensures that v is the unique optimal target, while H(φ′, v) > H(φ, v) = H(φ, u), a
contradiction. Here the strict inequality follows from the fact that H(u′, v) > 1.

Claim 2: Sφ intersects more than one component of G\{u}.
Assume that Sφ intersects exactly one of Vv1:u, Vv2:u, . . . , Vvd(u):u.

Case 1: φu = 0. We may assume Sφ ⊂ Vv1:u. But H(φ, v1) < H(φ, u), contra-
dicting minj∈V H(φ, j) = H(φ, u).

Case 2: φu 6= 0. We may assume Sφ ⊂ Vv1:u ∪ {u}. By lemma 5.2 we have
φ(Vv1:u)H(v1, u) ≤ φ(Vu:v1)H(u, v1) = φuH(i, v1). If we have equality here, we may
take v1 as our target, proving the claim. If we have strict inequality, there exists
ε > 0 such that the distribution φ′ defined by φ′u = φu − ε, φ′v1 = φv1 + ε and
φ′i = φi otherwise satisfies φ′(Vv1:u)H(v1, u) < φ′(Vu:v1)H(u, v1). Lemma 5.2 shows
that mini∈V H(φ′, i) = H(φ′, u), while H(φ′, u) > H(φ, u) = Tsi, a contradiction.

Claim 3: φ may be chosen so that Sφ ⊂ {w1, w2, . . . , wd(u)}.
Assume instead that Sφ 6⊂ {w1, w2, . . . , wd(u)}.
Case 1: φu = 0. Let φ′ be the distribution given by φ′wi = φ(Vvi:u) for 1 ≤

i ≤ d(u) and zero elsewhere. Lemma 5.2 and H(φ, u) = mini∈V H(φ, i) imply that
H(φ′, u) = mini∈V H(φ′, i) as well. Clearly, H(φ′, u) ≥ H(φ, u), so we may use φ′ in
place of φ.

Case 2: φu 6= 0. By an argument analogous to case 1, we may choose φ so that
Sφ ⊂ {u,w1, w2, . . . , wd(u)}. Suppose that φ(Vu:vi)H(u, vi) = φ(Vvi:u)H(vi, u) for
some i. We may take vi as our target node in lieu of u by lemma 5.2. Since vi is an
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optimal target, claim 1 ensures that vi is not a leaf, so φvi = 0 and we have reduced
ourselves to case 1.

If φ(Vu:vi)H(u, vi) > φ(Vvi:u)H(vi, u) for 1 ≤ i ≤ d(u) then there exists ε > 0
such that the distribution φ′ given by φ′u = φu − ε, φ′w1

= φw1 + ε and φ′i = φi
otherwise satisfies φ′(Vvi:u)H(vi, u) < φ′(Vu:vi)H(u, vi) for 1 ≤ i ≤ d(u). By lemma
5.2, mini∈V H(φ′, i) = H(φ′, u) > H(φ, u), a contradiction.

Claim 4: φ may be chosen to be concentrated on two leaves in {w1, w2, . . . wd(u)}.
Case 1: φ(Vu:vi)H(u, vi) = φ(Vvi:u)H(vi, u) for some i. By lemma 5.2, H(φ, u) =

H(φ, vi). Notice that φ is supported in two components of G\{vi}, so using the proof
of claim 3 we may define a new distribution φ′ concentrated on two leaves such that
mink∈V H(φ′, k) = H(φ′, vi) ≥ H(φ, vi) = H(φ, u) = Tsi.

Case 2: φ(Vu:vi)H(u, vi) > φ(Vvi:u)H(vi, u) for all i. We show by induction that
there exists a distribution φ′ supported on two leaves such that mini∈V H(φ′, i) ≥
H(φ, u). The base case |Sφ| = 2 is trivial. Assume that if |Sφ| = k−1 then there exists
a φ′ concentrated on two leaves satisfying minj∈V

∑
i∈V φ

′
iH(i, j) =

∑
i∈V φ

′
iH(i, u) =∑

i∈V φiH(i, u) = Tsi.
Considering |Sφ| = k ≤ d(u), order Sφ = {w1, w2, . . . , wk} so that H(w1, u) ≥

H(w2, u) ≥ · · · ≥ H(wk, u). There exists ε > 0 such that the distribution φ∗ defined
by φ∗w1

= φw1 + ε, φ∗wk = φwk − ε and φ∗i = φi otherwise satisfies φ∗(Vvi:u)H(vi, u) <
φ∗(Vu:vi)H(u, vi) for all i. IfH(w1, u) > H(wk, u) then by lemma 5.2, mini∈V H(φ∗, i) =
H(φ∗, u) > H(φ, u) = Tsi, a contradiction.

Otherwise, we have H(wi, u) = H(wj , u) for 1 ≤ i, j ≤ k. If there exists 0 < ε <
φwk such that φ∗(Vu:vk)H(u, vk) = φ∗(Vvk:u)H(vk, u) we have H(φ∗, vk) = H(φ∗, u) =
H(φ, u) = Tsi. Hence we may take φ∗ as our starting distribution and vk as our target
node. The support of φ∗ is contained in two connected components of V \{vk}, and so
the proof of claim 3 shows that there exists a distribution φ′ supported on two leaves
such that Tsi = mini∈V H(φ′, i). Finally, if φ∗(Vu:vk)H(u, vk) > φ∗(Vvk:u)H(vk, u) for
all 0 ≤ ε ≤ φwk , taking ε = φwk we have a distribution supported on k− 1 leaves such
that mini∈V H(φ∗, i) = Tsi and we are done by induction.

Claim 5: φ may be chosen so that Sφ concentrated on two leaves w1 and w2

such that H(w1, u) ≥ H(w2, u) and the target node u is a focus of G. If the tree G is
focal, then φ is concentrated on two u-pessimal leaves. If the tree G is bifocal, then
w1 is u-pessimal, v1 is the other focus of G and w2 is v1-pessimal. In this case, φ is
given by φw1 = π(Vu:v1), φw2 = π(Vv1:u) and H(φ, v1) = H(φ, u) = Tsi.

By claim 4, we may assume that φ is concentrated on leaves w1 ∈ Vv1:u and
w2 ∈ Vv2:u where H(w1, u) ≥ H(w2, u). In order to maximize the access time, the
distribution φ must weight w1 as much as possible while still keeping u as the
best target node. By lemma 5.2, we must have φw1H(v1, u) ≤ φw2H(u, v1) and
φw2H(v2, u) ≤ φw1H(u, v2). By equation (2.4) this is equivalent to{

φw1π(Vv1:u) ≤ φw2π(Vu:v1)
φw2π(Vv2:u) ≤ φw1π(Vu:v2)(5.3)

and the optimal choice is φw1 = π(Vu:v1) and φw2 = π(Vv1:u). Note that this choice
results in

H(φ, v1) = H(φ, u)(5.4)

by lemma 5.2.
The node w1 is u-pessimal. Indeed by claim 3, H(w1, u) = maxi∈Vv1:u H(i, u), so if

H(w1, u) < H(u′, u) then a u-pessimal node u′ must lie in one of Vvi:u, 2 ≤ i ≤ d(u).
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Vv1:u1Vv1:u

Vv1:u ∩ Vv1:u1

v1
u = u2u1

u3ud(v)

w1 w2

Vu:v1Vu1:v1

Vu3:v1Vud(v):v1

Fig. 5.1. The tree decomposition in claim 5 of the proof of theorem 1.10.

Since H(w2, u) ≤ H(w1, u), w2 cannot be u-pessimal, so consider the distribution
φ′ given by φ′w1

= φw1 , φ′u′ = φw2 and φ′i = 0 otherwise. This distribution φ′

satisfies the inequalities analogous to equation (5.3) so mini∈V H(φ′, i) = H(φ′, u) >
H(φ, u) = Tsi, a contradiction. By a similar argument, w2 must satisfy H(w2, u) =
maxi∈Vu:v1

H(i, u).
If u is the unique focus of G then w2 must also be u-pessimal. If u is a focus of

a bifocal G then v1 must be the other focus of G and w2 is v1-pessimal. If u is not a
focus, then the foci of G must be on the unique path between u and the u-pessimal
node w1. Hence w1 is v1-pessimal and H(w1, v1) ≥ H(w2, v1). By equation (5.4) we
may take v1 as our target node instead of u. If H(w1, v1) = H(w2, v1) then v1 must be
the unique focus of G since w1 is a v1-pessimal node, and Tsi = H(φ, v1) as required.

Assume for the sake of contradiction that u is not a focus of G and H(w1, v1) >
H(w2, v1). Let u1, u2, . . . , ud(v1) be the neighbors of v1, with w1 ∈ Vu1:v1 and w2 ∈
Vu2:v1 . This ordering ensures that u = u2. Consider the distribution φ′ given by
φ′w1

= π(Vv1:u1), φ′w2
= π(Vu1:v1) and φ′i = 0 otherwise. By lemma 5.2, H(φ′, v1) =

mini∈V H(φ′, i) and

H(φ′, v1) = π(Vv1,u1)H(w1, v1) + π(Vu1:v1)H(w2, v1)
= (π(Vu:v1) + π(Vv1:u ∩ Vv1:u1))H(w1, v1) + π(Vu1:v1)H(w2, v1)
> π(Vu:v1)H(w1, v1) + (π(Vv1:u ∩ Vv1:u1) + π(Vu1:v1))H(w2, v1)
= π(Vu:v1)H(w1, v1) + π(Vv1:u)H(w2, v1)
= H(φ, v1) = H(φ, u) = Tsi

where the second and fourth equalities follow from the decomposition of the tree (as
seen in figure 2) and the inequality is due to H(w1, v1) > H(w2, v2). The resulting
inequality H(φ′, v1) > Tsi is a contradiction, so u must be a focus of G.

Completion of proof. If G has a single focus a, then by claim 5, we may take
φ to be concentrated on two a-pessimal leaves in different components of G\{a} and
Tsi = H(φ, a) = H(a′, a) = Tforget by corollary 4.3. If G is bifocal with foci a and b,
then by claim 5, we may take φ to be concentrated on an a-pessimal node a′ and a
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b-pessimal node b′. Also, Tsi = H(φ, a) = H(φ, b) by equation (5.4). Finally,

Tsi = (µa + µb)Tsi = µaH(φ, a) + µbH(φ, b)
= φa′(µaH(a′, a) + µbH(a′, b)) + φb′(µaH(b′, a) + µbH(b′, b))
= φa′H(a′, µ) + φb′H(b′, µ) = (φa′ + φb′)Tforget = Tforget

by proposition 1.7.
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