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Abstract

We characterize the extremal structures for certain random walks on trees. Let G =
(V,E) be a tree with stationary distribution π. For a vertex i ∈ V , let H(π, i) and
H(i, π) denote the expected lengths of optimal stopping rules from π to i and from i to π,
respectively. We show that among all trees with |V | = n, the quantities mini∈V H(π, i),
maxi∈V H(π, i), maxi∈V H(i, π) and

∑
i∈V πiH(i, π) are all minimized uniquely by the star

Sn = K1,n−1 and maximized uniquely by the path Pn.

1 Introduction

Naturally, we think of the star Sn = K1,n−1 and the path Pn as the extremal tree structures.

This is also true with respect to random walks. Herein, we consider a few different quantities

associated with random walks, each of which identifies the star as the minimizing tree structure

and the path as the maximizing tree structure.

Let G = (V,E) be a graph. A random walk on G is a sequence of vertices

(w0, w1, . . . , wt, . . .) such that Pr(wt+1 = j | wt = i} is 1/deg(i) if (i, j) ∈ E and 0 other-

wise. For an introduction to random walks on graphs, see [9] or [10]. For i 6= j, the hitting

time H(i, j) is the expected number of steps before a walk started at i visits vertex j. We

define H(i, i) = 0. When G is not bipartite, as t tends to infinity the distribution of wt tends

to the stationary distribution π, where πi = deg(i)/2|E|. For bipartite G, we have the same

convergence if we consider a lazy walk in which we remain at the current state with probability

1/2, at the cost of doubling the expected length of any walk. For simplicity of exposition, we

will consider non-lazy walks on trees. We also assume n ≥ 4, since there is a single unique

tree structure for n ≤ 3.
∗Supported in part by NSA Young Investigator Grant H98230-08-1-0064.
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The study of extremal graph structures with respect to random walks has been well devel-

oped. Given a vertex i, we use i′ to denote an i-pessimal vertex achieving

H(i′, i) = max
j∈V

H(j, i).

Brightwell and Winkler [5] characterized the graph structure that maximizes the pessimal

hitting time. The cover time of a graph is the expected number of steps required to visit every

vertex of the graph. Feige [8] proved that the cover time of any graph is at least (1+o(1))n log n.

Brightwell and Winkler [6] showed that among trees, the star has the minimum cover time

(starting from the center) and the path has the maximum cover time (starting from a leaf).

Proposition 24 in chapter 6 of [1] collects a number of extremal results for random walks

on trees on n ≥ 3 vertices. Among the results listed are the following.

Proposition 1.1 For any tree G on n vertices, we have

(a) 2(n− 1) ≤ maxi∈V maxj∈V H(j, i) = maxi∈V H(i′, i) ≤ (n− 1)2,

(b) n− 3
2 ≤

∑
i,j∈V πiπjH(i, j) ≤ 1

6(2n2 − 4n+ 3),

(c) 1 ≤ (1− λ2)−1 ≤ (1− cos(π/(n− 1)))−1.

Moreover, the minimum is attained uniquely by the star and the maximum is attained uniquely

be the path.

The relaxation time (1−λ2)−1 from statement (c) is a well-known approximate mixing measure.

We add this to list of extremal results by considering a number of interesting quantities

arising in the study of exact stopping rules. Given an initial distribution σ and a target

distribution τ , a (σ, τ)-stopping rule halts a random walk whose initial state is drawn from σ

so that the distribution of the final state is τ . See [11, 12] for details. The access time H(σ, τ)

is the minimum expected length of all stopping rules that achieve τ when started from σ. A

(σ, τ)-stopping rule is optimal if it achieves this minimum expected length.

For our first two results, we consider the case where our initial distribution is π and our

target is a singleton. We consider rules to the worst and best target vertices. In each case, the

star and the path are the extremal structures.
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Theorem 1.2 If G is a tree on n vertices then

2n− 7
2
≤ max

i∈V
H(π, i) ≤ 4n2 − 8n+ 3

6
.

The minimum value is achieved uniquely by the star Sn and the maximum value is achieved

uniquely by the path Pn.

Theorem 1.3 If G is a tree on n vertices then

1
2
≤ min

i∈V
H(π, i) ≤

{
1
6(n2 − 2n+ 3) if n is even,

1
6(n2 − 2n) if n is odd.

The minimum value is achieved uniquely by the star Sn and the maximum value is achieved

uniquely by the path Pn.

As per [1] (chapter 5, p. 48), a result equivalent to Theorem 1.3 appears in unpublished work

of Yaron [14]. His result addressed variance of return times, rather than access times. We give

a direct proof of this fact using hitting times.

Our second pair of results concern mixing times for trees. A number of parameterless

mixing measures defined via stopping rules have been introduced and studied [2, 3, 4, 11, 12].

Among the most important measures are the mixing time Tmix = maxi∈V H(i, π) and the reset

time Treset =
∑

i∈V πiH(i, π). We interpret Tmix as the pessimal mixing time and Treset as the

average mixing time. Considering these mixing measures for trees, we find that once again,

the star and the path are the extremal structures.

Theorem 1.4 If G is a tree on n vertices then

3
2
≤ Tmix ≤

2n2 − 4n+ 3
6

.

The minimum value is achieved uniquely by the star Sn and the maximum value is achieved

uniquely by the path Pn.

Theorem 1.5 If G is a tree on n vertices then

1 ≤ Treset ≤
{

1
4(n2 − 2n+ 2) if n is even,

1
4(n− 1)2 if n is odd.

The minimum value is achieved uniquely by the star Sn and the maximum value is achieved

uniquely by the path Pn.
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In summary, by using the theory of exact stopping rules, we can extend the list of ex-

tremal characterizations for random walks on trees. In particular, the exact mixing results of

Theorems 1.4 and 1.5 complement the approximate mixing result of Proposition 1.1(c).

The organization of this paper is as follows. In Section 2, we recall previous results about

stopping rules and random walks on trees. In Section 3, we prove a lemma concerning pessimal

hitting times. In Section 4, we prove our theorems concerning H(π, i) and in Section 5, we

prove our results on exact mixing measures.

2 Preliminaries

2.1 Random walks and stopping rules

We summarize some essential results from [11]. When σ and τ are concentrated on single

states i and j respectively (we write σ = i, τ = j), then the access time H(i, j) is the hitting

time from i to j. In this instance, the only optimal stopping rule is “walk until you hit j.”

Whenever our target is concentrated on a vertex, the analogous rule is optimal for any starting

distribution:

H(σ, j) =
∑
i∈V

σiH(i, j).

Typically H(σ, τ) <
∑

i∈V σiH(i, τ) when τ is not a singleton.

Let Γ be a (σ, τ)-stopping rule. For each i ∈ V the exit frequency xi(Γ) is the expected

number of times the walk leaves state i before halting. Exit frequencies partition the expected

length of the stopping rule: E[Γ] =
∑

i∈V xi(Γ). A key observation due to Pitman [13] is that

exit frequencies satisfy the conservation equation∑
i∈V

pijxi(Γ)− xj(Γ) = τj − σj , ∀j ∈ V.

An important consequence of this equation is that the exit frequencies for two rules from σ to τ

differ by Kπi where K is the difference between the expected lengths of these rules. Hence the

distributions σ, τ uniquely determine the exit frequencies for an optimal stopping rule between

them. We denote these optimal exit frequencies by xi(σ, τ). Furthermore,

Γ is an optimal stopping rule ⇐⇒ ∃k ∈ V, xk(Γ) = 0. (1)

We call such a vertex k a (σ, τ)-halting state, or simply a halting state when the initial and
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target distributions are clear. Note that an optimal rule may have multiple halting states, but

we need only identify one such state to ensure that a rule is optimal.

Finally, we state the very useful random target identity (c.f. [10], equation (3.3)):∑
k∈V

πkH(i, k) =
∑
k∈V

πkH(j, k) for all i, j ∈ V. (2)

2.2 Exact mixing measures

Stopping rules give rise to a number of exact mixing measures (as opposed to approximate

mixing measures that incorporate an approximation parameter ε > 0). We collect some results

that were originally proven in [12], and subsequently developed into a broader framework in

[4]. The mixing time Tmix is the expected length of an optimal mixing rule starting from the

worst initial vertex:

Tmix = max
i∈V

H(i, π).

A vertex achieving this maximum is called mixing pessimal. The forget time Tforget is the

smallest t for which there exists a distribution µ such that for every starting vertex, the

expected time to attain µ via an optimal rule is at most t:

Tforget = max
i∈V

H(i, µ) = min
τ

max
i∈V

H(i, τ).

The forget time is attained by a unique distribution given by

µi = πi

1 +
∑
j∈V

pijH(j, π)−H(i, π)

 . (3)

Furthermore, if a vertex is mixing pessimal then it is also pessimal for µ.

The reset time

Treset =
∑
i∈V

πiH(i, π)

can be viewed as an average mixing time. We have the remarkable equality

Tforget = Treset (4)

for a random walk on an undirected graph. Moreover, for an undirected graph we have

Treset ≤ Tmix ≤ 4Treset. For a tree, we have the tighter upper bound Tmix ≤ 2Treset.
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2.3 Random walks on trees

We summarize some results from [3]. For adjacent vertices u, v we define Vu:v to be the set

of vertices in the subtree rooted at u after the removal of edge (u, v). For any two adjacent

vertices i and j on tree G = (V,E),

H(i, j) =
∑
k∈Vi:j

deg(k) = 2|E|
∑
k∈Vi:j

πk = 2|E|π(Vi:j).

Let d(i, j) denote the path distance between vertices i and j. Define `(i, k; j) =
1
2 (d(i, j) + d(k, j)− d(i, k)) where i, j, and k are vertices on G. The quantity `(i, k; j) mea-

sures the length of the intersection of the (i, j)-path and the (k, j)-path. For any pair i, j,

H(i, j) =
∑
k∈V

`(i, k; j) deg(k). (5)

Indeed, we can confirm the well-known formula for the hitting times on a path Pn on vertices

{1, 2, . . . , n}:

H(i, j) =
{

(j − 1)2 − (i− 1)2 for i ≤ j,
(n− j + 1)2 − (n− i+ 1)2 for i > j.

(6)

There are two distinct centers for random walks on trees: an “average center” and an

“extremal” center. The average center is the barycenter, which is the vertex (or two adjacent

vertices) that achieves mini∈V
∑

j∈V d(i, j). In other words, the barycenter minimizes the total

distance to all other vertices. The following statements for a vertex c are equivalent:

(a) The vertex c is a barycenter of the tree.
(b) The vertex c satisfies H(i, c) ≤ H(c, i) for all vertex i.
(c)

∑
k∈V πkH(k, c) = mini∈V

∑
k∈V πkH(k, i).

(d) For every vertex i adjacent to c, π(Vi:c) =
∑

k∈Vi:c
πk ≤ 1/2.

(7)

The extremal center of the tree is the focus (or two adjacent foci), introduced in [3]. The

focus (or foci) is the “extremal” center of the tree. There are two types: primary foci and

secondary foci. A primary focus is a vertex a ∈ V satisfying H(a′, a) = minj∈V maxi∈V H(i, j).

For example, the path P2k+1 has vertex k + 1 as its unique primary focus, while the path P2k

has two primary foci: vertices k and k + 1.

A tree with one focus is called a focal tree. A tree is focal if and only if there are a-

pessimal vertices in at least two components of G − a. For a focal tree, we use a′ and a′′ to

denote a-pessimal points in distinct components of G − a. Asymmetric trees typically have
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two foci, and such trees are called bifocal. Once we have identified the primary focus a on a

bifocal tree, the other focus b will be the neighbor of a on the unique (a, a′)-path. Vertex b

is a primary focus when H(b′, b) = H(a′, a) (for example: P2k). Vertex b is a secondary focus

when H(b′, b) > H(a′, a). In summary, a tree must either have a single primary focus or two

adjacent foci. In the latter case, a tree may have two primary foci, or one primary focus and

one secondary focus.

We reserve the symbols a, b to denote the foci of the tree, and symbols a′, a′′ and b′ for

their pessimal vertices, as appropriate. The foci of the tree play a special role for mixing and

forgetting walks on the tree. In particular, if u is the focus that is closest to vertex i then

H(i, π) = H(i, u) +H(u, π). (8)

Finally, the forget distribution µ is concentrated on the foci of the tree. For a focal tree, µ is

the singleton distribution on a and we have Tforget = H(a′, a) = H(a′′, a). For a bifocal tree,

we have

µa =
H(b′, b)−H(a′, b)

2|E|
and µb =

H(a′, a)−H(b′, a)
2|E|

,

with

Tforget = H(a′, µ) = H(b′, µ) =
H(a, b)H(a′, a) +H(b, a)H(b′, a)

2|E|
. (9)

u1
u2 u3

u4

u5

Figure 2.1: A tree on 5 vertices

v1
v2 v3 v4

v5

v6

Figure 2.2: A tree on 6 vertices

We use equation (5) to calculate the foci and the barycenters for two examples. The tree

in Figure 2.1 has primary focus a = u3 with H(a′, a) = H(u1, u3) = 4 and secondary focus

b = u2 with H(b′, b) = H(u4, u2) = 6. The vertex u3 is the unique barycenter of the tree. The

tree in Figure 2.2 has primary focus a = v3 with H(a′, a) = H(v5, v3) = 6 and secondary focus

b = v4 with H(b′, b) = H(v1, v4) = 9. Both v3 and v4 are barycenters, as each satisfy condition

(d) of equation (7).
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In general, foci are distinct from barycenters. Indeed, let Br,s denote the broom graph

consisting of a star with s leaves u1, u2, . . . , us centered at vertex c, along with a path of

length s on vertices c = v0, v1, . . . , vr. For the broom graph B4k,4k, the vertex c is the unique

barycenter. Simple calculations using formula (5) show that vertex a = vk is the primary

focus with H(v′k, vk) = H(u1, vk) = 9k2 + 1 and that b = vk−1 is the secondary focus with

H(v′k−1, vk−1) = H(v4k, vk−1) = (3k + 1)2.

3 Extremal Hitting Times

We begin by setting some terminology. In the remainder of this paper, we will often compare

quantities for two trees G = (V,E) and G∗ = (V ∗, E∗). The tree G∗ will be one of Sn, Pn or a

slight modification of G. We use a starred notation for quantities related to G∗: for example

its stationary distribution, degrees and hitting times are denoted by π∗, deg∗(i) and H∗(i, j),

respectively.

Let G be a tree on n vertices. Clearly, if H(a, b) = maxi maxj H(j, i) = maxiH(i′, i)

then a, b must be leaves. We start by proving a hitting time result that is complementary to

statement (a) of Proposition 1.1.

Lemma 3.1 For any tree G on n vertices,

1 ≤ min
i
H(i′, i) ≤

{
1
4n

2 if n is even,
1
4(n− 1)2 if n is odd.

The lower bound is achieved uniquely by the star. For n is even, the path is the unique

maximizing structure. For n odd, the maximum is achieved by the path, as well as any bifocal

tree such that the induced subgraph on Vb:a is P(n−1)/2, and 1
4(n−1)2−n ≤ H(b′, a) < 1

4(n−1)2.

Proof. Clearly, a star achieves the lower bound. If G is not a star, then for every vertex i, there

exists a vertex j such that d(i, j) ≥ 2, so H(i′, i) > 1. We now consider the upper bounds.

Using equation (6), we can verify that the central vertex (or vertices) of the path Pn is the

best target and achieves the stated upper bound.

Case 1: n is even. Suppose that G is a focal tree with H(a′, a) = H(a′′, a) ≥ n2/4.

Let A′ and A′′ be the components of G − a containing a′ and a′′, respectively. At least

one of these components (say, A′) has size at most b12(n − 1)c = 1
2(n − 2). This forces

H(a′, a) ≤ 1
4(n− 2)2 < 1

4n
2 by equation (6), a contradiction. So G cannot be a focal tree.
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Consider a bifocal G with foci a, b where H(a′, a) ≤ H(b′, b). If one of Va:b, Vb:a has size at

most 1
2n− 1, then miniH(i′, i) ≤ (n/2− 1)2, a contradiction. So |Va:b| = |Vb:a| = 1

2n. If either

of these components is not a path, then miniH(i′, i) < 1
4n

2 by statement (a) of Proposition

1.1. In conclusion, G must be a path.

Case 2: n is odd. Suppose that G is a focal tree with unique focus a, such that H(a′, a) =

H(a′′, a) ≥ 1
4(n − 1)2. By Proposition 1.1(a), the components of G − a containing a′ and a′′

must both be of size at least 1
2(n − 1). All vertices are accounted for, so these are the only

two components of G − a. Furthermore, to achieve this hitting time, both components must

be paths.

Finally, suppose that G is bifocal with foci a, b with H(a′, a) = mini∈V H(π, i). At least

one of the components Va:b, Vb:a has at most 1
2(n−1) vertices. Similar to our argument above,

this component must be a path of length 1
2(n− 1). Therefore H(a′, a) ≤ 1

4(n− 1)2.

It remains to characterize the structure of odd bifocal trees attaining the upper bound.

We know that Vb:a must be a path on 1
2 ∗ (n − 1) vertices and |Va:b| = 1

2(n + 1). In order for

both a and b to be foci, we must have H(b′, a) < H(a′, a) = 1
4(n− 1)2. Furthermore, this tree

attains the upper bound, so 1
4(n− 1)2 ≤ H(b′, b) = H(b′, a) +H(a, b) = H(b′, a) + n. Putting

the bounds together gives 1
4(n− 1)2 − n ≤ H(b′, a) < 1

4(n− 1)2.

For large odd n, there is a wide variety of extremal bifocal tree structures achieving

mini∈V H(i′, i) = 1
4(n − 1)2. We limit ourselves to describing the tree structures for the

two extreme cases for d(a, b′). Suppose that G is a bifocal graph on 2k + 1 vertices with

H(a′, a) = mini∈V H(i′, i) = k2. The hitting time restriction for H(b′, a) in Lemma 3.1 trans-

lates to

k2 − 2k − 1 ≤ H(b′, a) < k2, (10)

with k2 − 2k − 1 = H(b′, a) if and only if b is also a primary focus. Let F be the subgraph on

k + 1 vertices induced by Va:b, and let a = v1, v2, . . . , vr = b′ be the unique (a, b′) path, where

r ≤ k (since G is bifocal).

First, consider the case r = k, so that d(a, b′) = k − 1. Such a graph F is a k-path with a

pendant edge (vi, u) where 1 ≤ i ≤ k − 1. Setting F ∗ = Pk and using equation (5), we have

H(b′, a) = H(vk, v1) = H∗(vk, v1) + `(vk, u; v1) + `(vk, vi; v1) = (k − 1)2 + 2(i − 1). Equation

(10) is satisfied with strict inequality for 1 ≤ i ≤ k− 1. So every such graph structure is valid,

and b is always a secondary focus.
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Next, we determine the lower bound for r = d(a, b′) + 1. For a fixed r, the hitting time

H(b′, a) is maximized by appending the remaining k+1−r vertices as leaves adjacent to vr−1.

In other words, F is a broom graph with a at the handle tip. Setting F ∗ = Pr, we use equation

(5) to yield H(b′, a) = H(vr, v1) = H∗(vr, v1) + 2(k − 2) = (r − 1)2 + 2(k + 1− r)(r − 2). The

first inequality of equation (10) is then equivalent to the condition r ≥ k + 2−
√

2k + 2.

Considering a more specific example, if k = 7 then we can satisfy this condition with

equality. This results in an asymmetric extremal tree with two primary foci! Indeed, the

resulting tree G is the broom graph B11,4 on 15 vertices, for which H(a′, a) = H(b′, b) = 49.

More generally, we can construct extremal trees for k + 2−
√

2k + 2 ≤ r ≤ k by strategically

placing the remaining k+1−r vertices to guarantee that equation (10) is satisfied. For example,

Figure 3.1, enumerates all extremal structures for the induced subgraph on Va:b when k = 6.

Figure 3.1: The 10 possible structures for the induced 7-vertex subgraph on Va:b for bifocal
trees on 13 vertices that achieve mini∈V H(i′, i) = 36. The primary focus a is the circled upper
left hand vertex of each tree. The remaining (nondisplayed) 6 vertices in Vb:a are a 6-path
connected to vertex a.

4 Access times from the stationary distribution

In this section, we prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. The target vertex achieving maxi∈V H(π, i) must be a leaf. Indeed,

let u be a non-leaf with neighbors v1, . . . vd where π(Vv1:u) ≤ π(Vv2:u) ≤ · · · ≤ π(Vvd:u). This

ordering ensures that π(Vv1:u) < π(Vu:v1), so that

H(π, v1)−H(π, u) = π(Vu:v1)H(u, v1)− π(Vv1:u)H(v1, u) = 2|E|
(
π(Vu:v1)2 − π(Vv1:u)2

)
> 0,

where the second equality follows from equation (5). We may repeat this process until reaching

leaf, strictly increasing the access time with each iteration.
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Consider the lower bound. Let G∗ = Sn denote the star of n vertices with center c. If

y, z are distinct leaves then H∗(c, z) = 2n − 3 and H∗(y, z) = 2n − 2. We have H∗(π∗, z) =

(1− π∗z − π∗c )H∗(y, z) + π∗cH
∗(c, z) = 2n− 7/2.

Let G be a tree on n vertices with leaf u attaining H(π, u) = maxiH(π, i). Let the unique

neighbor of u be v, so that H(v, u) = 2n− 3. Since G is not a star, πv < π∗c . We have

H(π, u)−H∗(π∗, z) = πvH(v, u)− π∗cH∗(c, z) +
∑
i∈V−v

πiH(i, u)−
∑

j∈V ∗−c
π∗jH(j, u)

> (πv − π∗c ) (2n− 3) +
(
(1− πv − πu)− (1− π∗c − π∗z)

)
(2n− 2)

= π∗c − πv > 0.

The first inequality follows from the existence of a nontrivial component of G − v, giving at

least two vertices w such that H(w, u) > 2n− 2. This strict inequality shows that the star is

the unique minimizing structure.

Next, we consider the upper bound. Taking G = Pn, we confirm that

H(π, 1) =
1

n− 1

n−1∑
k=1

((n− 1)2 − (k − 1)2)− (n− 1)2

2(n− 1)

= (n− 1)2 − 1
n− 1

n−2∑
j=1

j2 − n− 1
2

=
4n2 − 8n+ 3

6
. (11)

Given any tree G 6= Pn on n vertices, we construct a related tree G∗ by moving one

leaf, and then show that maxi∈V H(π, i) < maxj∈V ∗ H∗(π∗, j). Let the leaf u ∈ V achieve

H(π, u) = maxiH(π, i). The u-pessimal vertex u′ must also be a leaf. Let z be nearest vertex

to u′ on G with degree at least 3. Let x be a leaf in V \{u, u′} such that the (x, u′)-path

contains z. Let the unique neighbor of x be y (possibly y = z). Let G∗ be the graph obtained

by removing the leaf x and then adding a leaf x∗ adjacent to u′. We claim that

max
i∈V

H(π, i) = H(π, u) < H∗(π∗, u) ≤ max
j∈V ∗

H∗(π∗, j).

We partition the vertices of G into 4 sets. The forest G − z has deg(z) components. Let

Uu′ , Ux be the components containing u′ and x, respectively. Our partition of V is Vx = {x},

Vu′ = Uu′ , Vz = Ux − x + z and W = V \(Vx ∪ Vu′ ∪ Vz). We use an analogous partition for

V ∗, replacing Vx with Vx∗ = {x∗}.
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For i ∈ Vu′ ∪ Vz ∪W , we have

H∗(i, z)−H(i, z) =


0 if i ∈W,

−`(i, y; z)− `(i, x; z) = −2`(i, y; z) if i ∈ Vz,
`(i, u′; z) + `(i, x∗; z) = 2`(i, u′; z) if i ∈ Vu′ .

(12)

Furthermore, for i ∈ V \{x, y, u′} we have deg∗(i) = deg(i), while deg∗(y) = deg(y) − 1,

deg∗(u′) = deg(u′) + 1 and deg∗(x∗) = deg(x) = 1.

We decompose the quantity

H∗(π∗, u)−H(π, u) =
∑
i∈V ∗

π∗iH(i, u)−
∑
j∈V

πjH(j, u) (13)

according to our partition. For i ∈W , we have πiH(i, u) = π∗iH
∗(i, u), so∑

i∈W

(
π∗iH

∗(i, u)− πiH(i, u)
)

= 0.

We calculate∑
i∈Vz

(
π∗iH

∗(i, u)− πiH(i, u)
)

= − 1
2|E|

H(y, u) +
∑
i∈Vz

π∗i
(
H∗(i, u)−H(i, u)

)
= − 1

2|E|
H(y, u) +

∑
i∈Vz

π∗i
(
H∗(i, z)−H(i, z)

)
=

1
2|E|

(
−H(y, u)− 2

∑
i∈Vz

deg∗(i)`(y, i; z)

)

=
1

2|E|
(−H(y, u)− 2H∗(y, z))

where the third and fourth equalities come from equations (12) and (5), respectively. Next,

we have∑
i∈Vu′

(
π∗iH

∗(i, u)− πiH(i, u)
)

=
1

2|E|
H∗(u′, u) +

∑
i∈Vu′

πi
(
H∗(i, u)−H(i, u)

)

=
1

2|E|

H∗(u′, u) +
∑
i∈Vu′

deg(i)
(
H∗(i, z)−H(i, z)

)
=

1
2|E|

H∗(u′, u) + 2
∑
i∈Vu′

deg(i)`(u′, i, z)


=

1
2|E|

(
H∗(u′, u) + 2H(u′, z)

)
,

12



where as above, the last two equalities are due to equations (12) and (5). Finally, we can

expand equation (13) to find that

H∗(π∗, u)−H(π, u)

=
−H(y, u)− 2H∗(y, z) +H∗(u′, u) + 2H(u′, z) +H∗(x∗, u)−H(x, u)

2|E|

=
−H(y, u)−H∗(y, z) +H∗(u′, u) +H(u′, z)

|E|
.

By equation (5), H(z, u) = H∗(z, u), so that we may use −H(y, u) +H∗(u′, u) = −H(y, z) +

H∗(u′, z) to yield

H∗(π∗, u)−H(π, u) =

(
H(u′, z)−H(y, z)

)
+
(
H∗(u′, z)−H∗(y, z)

)
|E|

(14)

>
H(u′, z)−H(x, z)

|E|
≥ 0,

where the final inequality follows from H(u′, z) + H(z, u) = H(u′, u) ≥ H(x, u) = H(x, z) +

H(z, u).

Proof of Theorem 1.3. By Proposition 1.1, mini∈V H(π, i) is achieved by the barycen-

ter of the tree. Verifying the lower bound is easy: if c is the central vertex in Sn, then

mini∈V (Sn)H(π, i) = H(π, c) = 1/2. For G 6= Sn, let u achieve H(π, u) = miniinV H(π, i). We

must have πu < 1/2 and therefore H(π, u) ≥ (1− πu) > 1/2.

As for the upper bound, we first calculate miniH(π, i) for the path. By condition (c) of

equation (7), miniH(π, i) is achieved by the barycenter. For odd n, if we set G∗ = P(n+1)/2

then by symmetry

min
i
H(π, i) = H(π, (n+ 1)/2) = 2 · 1

2
H∗(π∗, 1) =

n2 − 2n
6

.

For an even path, setting G∗ = Pn/2 and G∗∗ = Pn/2+1, we have

min
i
H(π, i) = H(π, n/2) =

n− 2
2n− 2

H∗(π∗, 1) +
n

2n− 2
H∗∗(π∗∗, 1) =

n2 − 2n+ 3
6

.

Let G 6= Pn be a tree on n vertices with barycenter c. We construct a tree G∗ such

that H(π, c) = mini∈V H(π, i) < minj∈V ∗ H∗(π∗, j). Let G1, G2, ..., Gd be the components of

G − c, where π(G1) ≥ π(G2) ≥ · · · ≥ π(Gd), and uk ∈ V (Gk) is the vertex adjacent to c for

1 ≤ k ≤ d := deg(c). We claim that each component of G− c must be a path. Indeed, let Gk

13



be the tree with Vk := V (Gk)∪ {c} and Ek := E(Gk)∪ {(bk, c)}. Using H(k)(u, v) and π(k) to

denote hitting times and the stationary distribution for Gk, we have

H(π, c) =
d∑

k=1

∑
v∈V (Gk)

πvH(v, c) =
d∑

k=1

∑
v∈V (Gk)

|Ek|
|E|

H(k)(π(k), c).

Fixing the size of the components, maximizing each of the H(k)(π(k), c) will result in the

maximum H(π, c). By Theorem 1.2, each of these components must be a path.

Since G is not a path, we must have d > 2. Since π(G1) ≥ π(G2) ≥ π(G3), and c is the

barycenter, π(G1) ≤ 1
2 , so π(G2) ≤ 1− π(G1 ∪ {c}) ≤ 1

2 −
3

2(n−1) . Let x 6= c be the end leaf in

the path G3 and let y be its unique neighbor (it is possible that x = u3 and y = c). Let z 6= c

be the end leaf in the path G2.

We construct G∗ by removing the leaf x and then adding a leaf x∗ adjacent to z. For

1 ≤ k ≤ d, let G∗k = (V ∗k , E
∗
k) be the path subgraphs of G∗ defined and indexed analogously

to the Gk subgraphs of G. The vertex c will still be the barycenter of G∗ since π∗(G∗2) =

π∗(G2) + 2
2(n−1) <

1
2 . We have

H∗(π∗, c)−H(π, c)

=
d∑

k=1

|E∗k |
|E|

H∗(k)(π∗(k), c)−
d∑

k=1

|Ek|
|E|

H(k)(π(k), c)

=
(
|E∗2 |
|E|

H∗(2)(π∗(2), c)− |E2|
|E|

H(2)(π(2), c)
)

+
(
|E∗3 |
|E|

H∗(3)(π∗(3), c)− |E3|
|E|

H(3)(π(3), c)
)
.

Let r = |V (G2)| and s = |V (G3)| so that r ≥ s ≥ 2. We have G2 = Pr, G∗2 = Pr+1, G3 = Ps

and G∗3 = Ps−1. Using formula (11) (which is actually valid for n ≥ 2) and simplifying, this

becomes

H∗(π∗, c)−H(π, c) =
1

6(n− 1)
·
{

(2r − 1)(6r + 1)− (2s− 3)(6s− 5) for s > 2,
(2r − 1)(6r + 1)− 3 for s = 2.

This quantity is always positive, so if G is not a path then this tree is not the maximal structure

for maxiH(π, i).

5 Mixing measures

In this section, we prove Theorems 1.4 and 1.5.

14



Proof of Theorem 1.4. Let z ∈ V achieve H(z, π) = maxiH(i, π). The vertex z must be a

leaf. Indeed, suppose that z is not a leaf and let u be focus nearest to z. Let j be a leaf such

that z is on the unique (j, u)-path. By equation (8),

H(j, π) = H(j, u) +H(u, π) = H(j, z) +H(z, u) +H(u, π) > H(z, u) +H(u, π) = H(z, π),

a contradiction.

We now prove the lower bound. If G = Sn then H(z, π) = 3/2. Consider any tree G 6= Sn.

Since z is a leaf, z is not a focus. Suppose the nearest focus to z is u. By equation (8),

H(z, π) = H(z, u) + H(u, π) ≥ 1 + H(u, π), with equality holding if and only if z is a leaf

adjacent to u. Since G 6= Sn, we have πu < 1/2, so that H(u, π) > 1/2 since we must exit u

with probability at least 1− πu. Therefore H(z, π) > 3/2, proving that the star is the unique

minimizing tree structure.

We turn to the upper bound. Given any tree G, suppose that the vertex u achieves

H(u, π) = maxi∈V H(i, π). Clearly, H(u, π) ≤
∑

k πkH(u, k). By the random target identity

(2) and Proposition 1.1(b), the latter quantity is at most 1
6(2n2−4n+3) and this upper bound

is achieved uniquely by the path Pn. Furthermore, if z is an endpoint of the path Pn then

H(z, π) =
∑

k πkH(z, k). Indeed, the other endpoint of Pn is a halting state for the naive rule

“choose a target vertex k according to π and then walk until you reach k.” The existence of

a halting state guarantees that this rule is optimal, by equation (1).

Proof of Theorem 1.5. By equation (4), we have Treset = Tforget, so our proof will consider the

forget time in place of the reset time.

As usual, the lower bound is easy to prove. Clearly the star has forget time equal to

1. Consider a tree G 6= Sn. If a is a primary focus of G then d(a′, a) ≥ 2 and therefore

H(a′, a) ≥ 4. If G is focal then Tforget = H(a′, a) ≥ 4. If G is bifocal with foci a, b, then

Tforget = µbH(a′, b) + µaH(a′, a) ≥ µb + 4(1− µb) = 4− 3µb > 1.

Considering the upper bound, suppose that G is focal with unique focus a, so that Tforget =

H(a′, a). Let the components of G−a be G1, G2, . . . , Gd where d = deg(a) such that for i = 1, 2

we have zi ∈ V (Gi) and H(a′, a) = maxi∈V H(i, a) = H(zi, a). By Lemma 3.1,

H(a′, a) ≤ min{|V (G1)|2, |V (G2)|2} ≤
⌊

1
2

(n− 1)
⌋2

. (15)

If n is odd, then equality holds if and only if G is a path. If n is even, then equality holds if

and only if G is a path of length n− 1 with a single leaf attached to the central vertex.
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Consider a bifocal tree G with foci a, b. We have Tforget = H(a′, µ) = H(b′, µ) by equation

(9). Let r = |Va:b| and n− r = |Vb:a|, so that H(a, b) = 2r− 1, H(b, a) = 2(n− r)− 1. Suppose

that n is odd. We have min{r, n−r} ≤ (n−1)/2. Therefore, Tforget < min{H(a′, a), H(b′, b)} ≤
1
4(n − 1)2, so the odd path has a larger forget time than G. Therefore the odd path is the

unique maximizing structure for odd trees.

Suppose that n is even. By Proposition 1.1(a), H(b′, a) ≤ (r− 1)2 and H(a′, a) ≤ (n− r)2.

Using the formula from equation (9), we find that

Tforget =
H(a, b)H(a′, a) +H(b, a)H(b′, a)

2|E|
≤ (2r − 1)(n− r)2 + (2(n− r)− 1)(r − 1)2

2|E|

=
1

2|E|
(
2(n− 1)r(n− r)− (n− 1)2

)
=

1
2

(2r(n− r)− (n− 1))

which is maximized for r = n/2. This value is attained uniquely by the even path, giving a

value of 1
4(n2 − 2n+ 2). This value is strictly larger than the forget time of equation (15), so

the even path is the unique maximizing structure for even trees.
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