Random minimum length spanning trees
in regular graphs
Andrew Beveridge

Department of Mathematical Sciences
Carnegie Mellon University

Alan Frieze* Colin McDiarmid
Department of Mathematical Sciences Department of Statistics
Carnegie Mellon University University of Oxford

February 9, 1998

Abstract

Consider a connected r-regular n-vertex graph G with random independent edge
lengths, each uniformly distributed on (0,1). Let mst(G) be the expected length of
a minimum spanning tree. We show that mst(G) can be estimated quite accurately
under two distinct circumstances. Firstly, if r is large and G has a modest edge
expansion property then mst(G) ~ 7:¢(3), where ((3) = 3272, 473 ~ 1.202. Secondly,
if G has large girth then there exists an explicitly defined constant ¢, such that
mst(G) ~ c,n. We find in particular that c3 = 9/2 — 6log2 ~ 0.341.

1 Introduction

Given a graph G = (V, E) with edge lengths x = (z. : e € F), let msf(G,x) denote the
minimum length of a spanning forest. When X = (X, : e € F) is a family of independent
random variables, each uniformly distributed on the interval (0, 1), denote the expected
value E(msf(G, X)) by msf(G). This quantity gives a measure of the connectivity of G.
In the most important case when G is connected, we use mst in place of msf in order to
indicate minimum spanning tree.
Consider the complete graph K, and the complete bipartite graph K, ,. It is known
(see [4, 5]) that, as n — oo, mst(K,) — ((3) and mst(K,,) — 2((3). Here ((3) =
2177% ~ 1.202. Also, it has recently been shown [12] that, for the d-cube @4, which has
2¢ nodes and is regular of degree d, we have (d/2%)mst(Qq) — ¢(3) as d — co.
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The results about mst quoted above (and others from [5]) are for particular regular
graphs with growing degrees, and show that mst is about ((3) times the number of nodes
divided by the degree. The results below provide a generalisation of all these results about
mst. The first result gives a rather general lower bound. Let §(G) and A(G) denote the
minimum and maximum degree respectively of the graph G.

Theorem 1 For any n-vertexr graph G with no isolated vertices,

msf(G) 2 (14 0(1))(n/A)((3)

where A = A(G) and the o(1) term is with respect to A — oo. In other words, for
any € > 0 there exist Ay such that, for any graph G with no isolated vertices and with

A =A(G) > Ay, we have
msf(G) = (1 - €)(n/A)C(3).

The above result in fact gives the right value for graphs G = (V, E) that are regular or
nearly regular and have a modest edge expansion property. For S C V' let (S : S) be the
set of edges with one end in S and the other in S =V \ S.

Theorem 2 Let oo = a(r) = O(r~3) and let p = p(r) and w = w(r) tend to infinity with
r. Suppose that the graph G = (V, E) satisfies

r<8(GQ)<AG) < (1+a)r (1)
and
(S : 9)|/|S| > wr3logr for all S CV with r/2 < |S| < min{pr,|V[/2}.  (2)
Then
msf(G) = (1 +0(1) L¢3

-
where the o(1) term is with respect to r — oo.

Note that for |S| = k we have
1S:S|/|S|>6—k+1 (3)

and so we are really getting some expansion here for |S| < min{pr, |V|/2}.
For regular graphs we of course take o = 0. For K,,, K,,, and (4 we can define w, p
such that the condition (2) holds: when G = @; we use the result that

(S 8)I/IS] = d —log, |S], (4)

see for example Bollobds and Leader [3].
There are further similar results. Let [d] denote the set {1,...,d}. Consider the d-

dimensional mesh Mél,z = (Vin, E(g,l)), where the vertex set V;, = {0,1,...,n—1}% and if

n
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z,y € Vg, then {z,y} is in the edge set Eél,)L if and only if there exists j € [d] such that

; =y if ¢ # j and z; —y; = £1. Thus Mu(ll)l has n¢ vertices and has maximum degree
2d for n > 3. We also con51der the ‘wrap-around’ version Mdn = (Vdn,Edn) where if
z,y € Vg then {z,y} € E in ) if and only if there exists j € [n] such that z; = y; if i # j
and z; —y; = &1 mod n. Thus Mé ) is 2d-regular for n > 3. Both Még and MéQ) are the

n
d-cube )4, which is d-regular. The first part of the theorem below is Penrose’s result on

the d-cube mentioned above.
Theorem 3 If d — oo then
2d
mst(Qq) ~ —<(3),
mst(M{) ~ —C( )

uniformly over n > 3, and if also n — oo in such a way that d = o(n) then

mst(M n) —C( ).

We now move on to discuss the second circumstance under which we can estimate
msf(G) quite accurately. Instead of considering graphs with large degrees, we consider
r-regular graphs with large girth, or at least with few edges on short cycles. Recall that
the girth of a graph G is the length of a shortest cycle in G.

Theorem 4 Forr > 2 let

1
r—122 k(k + p)(k +2p)’

Cr =

where p=1/(r — 1). Then, for any r > 2 and any r-reqular graph G

3
msf(G) — ¢n| < ﬁ,

where n denotes the number of vertices and g denotes the girth of G. The constants c,
satisfy cg = %, c3 = 9/2 —6log2 ~ 0.341, ¢, = 9 — 3log3 — /3 ~ 0.264, and c5 =
15 —10log2 — 5m/2 ~ 0.215; and ¢, ~ ((3)/r as r — oc.

Corollary 5 For each r > 2 and g > 3, there exists § = d(r,g) > 0 with the following
property. For every r-reqular graph G with n vertices such that there is a set of at most on
edges which hit all cycles of length less than g, we have

2
Imsf(G) —eyn| < il
g



From this corollary, we obtain easily a result about random regular graphs. Let G, ,
denote a random r-regular graph with vertex set {1,...,n}. Let the random variable L,, ,
be the minimum length of a spanning forest of the random regular graph G, , when it has
independent edge lengths each uniformly distributed on (0,1). Thus in the notation above
we may write L, , = msf(G,,,X) and E(L,,) =E(msf(Gn,)).

Using the configuration model of random regular graphs see e.g. [2], it can easily be
proved that

Pr(G,, contains > n'/? edges on cycles of length < v/logn) < n~(1/2=e(1)
We therefore have
Corollary 6 For each integer r > 3,
(1/n)E(Ly,) — ¢

Remark: Since for 7 > 3, G,,, is connected with probability 1 — O(n™?), this result is not
changed if we condition on G/, , being connected.

Further information on the constants c, is given in Propositions 10 and 11 below. It is
straightforward to extend these results to more general distributions on the edge lengths —
see [5].

We also prove some results about how concentrated mst(G, X) is about its mean.

Theorem 7 (a) For any r-reqular graph G = (V, E) with n vertices and r = o((n/logn)'/?),
Pr(|mst(G,X) — mst(G)| > en/r) < e <™/
if n is sufficiently large.
(b) There is a constant K > 0 such that the following holds. Suppose that

(S : 8)| > ~r|S| for all S CV with |S| < n/2.
Then for any 0 < e <1,
Pr(|mst(G,X) — mst(G)| > en/r) <n e—Kf272n/(10gn)2,
for n sufficiently large.

The following two propositions are easier than Corollary 6, and have short proofs. The
first concerns random 2-regular graphs, where we can give a more precise result than for
general 7.

Proposition 8
E(L,2) =n/2 —logn+ O(y/logn).
Finally, let us consider random graphs G, , which are not too sparse. Consider any edge-
probability p = p(n) which is above the connectivity threshold, that is P(Gy,, connected) —

1 as n — oo. (Thus we are assuming that p(n) = in(logn + w(n)) where w(n) — oo as
n — 00.)

Proposition 9 If p = p(n) is above the threshold for connectivity, then p msf(G,,p) —
¢(3) as n — oo, in probability and in any mean.



2 Proofs

Given a graph G = (V, E) with |V| =n and 0 < p < 1, let G, be the random subgraph of G
with the same vertex set which contains those edges e with X, < p. [Here we are assuming
that as before we have a family X = (X, : e € F) of independent random variables each
uniformly distributed on (0,1).] Note that the edges of G are included independently with
probability p. In this notation, the usual random graph G, , could be written as (K,,),. Let
k(@) denote the number of components of G. We shall first give a rather precise description
of msf(Q).

Lemma 1 For any graph G,

ms[(G) = | B(s(Gy))dp — w(G). (5)
Proof We shall follow the proof method in [1] and [7]. Let F' denote the random set

of edges in the minimal spanning forest. For any 0 < p <1, > cp 1(x.>p) is the number of
edges of F' which are not in G, which equals x(G,) — k(G). But

1 1
msf(G,X) =) Xe=) /:O Lix.>p)dp = /p:o > Lixespydp-

ecF ecF ecF
Hence 1
msf(G,X) = / K(G,)dp — K(G),
p=0
and the result follows on taking expectations. O

2.1 Large Degrees

We substitute p = z/r in (5) to obtain
1 T
msf(G) = / E(k(Gayr))dz — (G).
=0
Now let Cy , denote the total number of components in G, with k vertices. Thus

T

S E(Cha)de — £(G). (6)

=0 =1

msf(G)= [

We decompose
Clc,a: = Tk,z + Ok,

where
Tk, denotes the number of tree components of G,/ with k vertices

and
Ok, denotes the number of non-tree components in G/, with k vertices.

5



We will find, perhaps not unexpectedly, that the number of components of G/, is usually
dominated by the number of components which are small trees. Imagine taking all trees 7'
in G which have k vertices and giving them a root. Fix a vertex v € V and let 7 (v, k) be
the set of trees obtained in this way which have root v. Let t(v, k) = |T (v, k).

Lemma 2

kk_2((5 _ k)lc—l kk—2Ak—1

o Stk s
Proof Given a tree T € T (v,k) we label v with k£ and then define a labelling f :
V(T)\ {v} — {1,...,k — 1} of the remaining vertices. Now consider pairs (7}, f) where
T € T(v,k) and f is such a labelling. Clearly each rooted T' € T (v, k) is in (k — 1)! such
pairs. Furthermore each such pair defines a unique spanning tree 7" of Ky, where (i, j) is
an edge of T" if and only if there is an edge {z,y} of T such that f(z) =i and f(y) = j.
Each spanning tree 7" of K} nodes lies in between (§ — k)*~! and A*~! such pairs. Take
a fixed breadth first search of 7" starting at k£ and on reaching vertex ¢ for the first time,
define f~!(¢). There will always be between § — k and A choices. Thus

(6 — k)F1ER2 < #pairs (T, f) = t(v, k) (k — 1)! < AR 1Ek2

and the lemma follows. O

Now consider a fixed sub-tree 7" of G containing £k vertices. Suppose that the vertices of
T induce a(T') edges in G, and the sum of their degrees in G is b(T"). Then the probability
m(x,T) that it forms a component of G, satisfies

2\ k-1 2\ D) —a(T)—k+1
= (% 1-2 . 7
m(z, T) (r) ( 7“) (7)
Also
k
k—1<a(T)< <2> and k6 < b(T) < kA. (8)
It follows from Lemma 2, (7) and (8) that

E(7ke) < %Xv:t(v,k) (%)k_l (1 _r

)k&—(k+2)(k—1)/2

T
nkf=2 rANFTL z\ KO-k
S T (7) v (1_?> ' (10)

Similarly,

) kA—2k+2

E(r.) > %;t(v,k) (%)kl (1—% (11)

nkb2 (6§ —k\*" | T\kA
Kl (r) v (1_?> ' (12)
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The 1/k factor in front of the sums in (9) and (11) comes from the fact that each k-vertex
tree appears k times in the sum Y-, ¢(v, k). The following will be needed below:

® b1 key, (k=D
Jy e e = S 2
and for a > 1
2
/°° s le ke gy < /°° (we~")rdz < % okn/2 gy — 2 k)2
r=a r=a r=a k

Now, if a,b — oo, then

= (1+0(1))C(3)- (13)

We may now prove Theorem 1: after that we shall continue the development here to prove
Theorem 2.

Proof of Theorem 1 We use four stages.
(a) Let € > 0. Let a and b be sufficiently large that

b kk73

/:_OI; (k—1)!

oF ek dy > (1 — €)¢(3).

Now, if 0 <z <r/2 and 0 < o < 1/2, then
(1 —/r)kr0+e) > exp (—k(l +a)(z + 23;2/7')) > e " exp(—zka — 32%k /7).

Let 7y be sufficiently large that for r > ry we have (1—b/r)>" > (1—¢) and exp(—3a?b/r) >
(1 —¢€). Let 0 < n < 1/2 be sufficiently small that exp(—abn) > (1 —¢).

Now suppose that r > rg, that the graph G has § = 6(G) = r, and that A = A(G) <
(1 +n)r. Then by (12) and the above, for 0 < x < a and 1 < k < b,

n kF2 AN e\ n kE2
> 000 _ k—1 ( _ _) > k—1_ —kx - 3'
B(mea) 2 30— <1 r) v o\=3) ZEmoo ¢ (4

Hence msf(G) > (1 —€)*2((3).
(b) Next we drop the assumption on 6(G). Let € > 0. We shall show that there exist

r1 and 3 > 0 such that, for any connected n-vertex graph G with r; < A = A(G) < fn,

we have
n

mst(G) 2 (1~ €)1 C(3).

To do this, let 7o and n > 0 be such that for any r > ry and any graph G with
d =90(G@) =r and A = A(G) < (1+n)r, we have msf(G) > (1 —€)((3). We have just seen
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that this is possible. Let r; = max{ry,2/n} and 8 > 0 be such that if r; < r < n then

r+ 1< (L)
Now let G be a connected n-vertex graph with r < r = A(G) < fn. We shall add
edges to G to produce a graph G’ which has minimum degree r and maximum degree

A’ < (14 mn)r: then

mst(G) > mst(G') > (1 — e)%((?)),

and the desired result follows. To get G’ we add edges between vertices of degree less than
r until the vertices S of degree less than r form a clique. We then add new edges from S
to S = V'\ S until the vertices in S have degree r. When adding an (S : S) edge we choose
a vertex of current smallest degree in S. In this way we end up with §(G') = r and

7.2

A <r+ +1<(1+n)r

n—r

as required.

(c) Next we shall deduce the corresponding result for connected graphs but without
the condition that A < fn.

Let € > 0. Choose r; and 8 > 0 as above for ¢/3. Let 7, be the maximum of r; and
[6/€]. Consider a connected n-vertex graph G with A = A(G) > ry. Let k = [(2/6)], and
form k disjoint copies G1,...,Gy of G. Foreach i =1,...,k — 1 add a perfect matching
between GG; and G, ;. The new graph H is connected, and has kn vertices and maximum
degree A + 2, and thus satisfies A(H) < 2n < §|V(H)|. Hence

mst(H) > (1 —€/3)(kn/(A +2))((3) > (1 — 2¢/3)(kn/A)((3),
since 2/(A+2) < 2/r; <€/3. But mst(H) < k mst(G) + (k—1)/(n+ 1), and so
mst(G) > (1/k)mst(H) —1/n > (1 —2¢/3)(n/A)((3) = 1/n > (1 —€)(n/A)((3),

for n > 3/e.

(d)  Finally we remove the assumption of connectedness. Let ¢ be the infimum of
mst(K,) over all positive integers n. Then ¢ > 0 - indeed it is easy to see that ¢ > 1/2.
Let € > 0. Let 5 be as above, and let 73 be the maximum of r; and [((3)r2/c]. Consider a
graph G with A = A(G) > rs. List the components of G as Gy, . .. , Gy where G; = (V;, E;).
If |V;| < 7o then

mst(Gi) > ¢ 2 12((3)/rs > [Vi[C(3)/A(G),

and if |V;| > 7o then
mst(Gi) > (1 — €)|[Vi[((3)/A(G).
Hence

k

mst(G) = ;mst(Gi) > (1= Vi{B)/AG) = (1 = 6[V(G)[C(3)/AG),

=1



as required. This completes the proof of Theorem 1. O

Proof of Theorem 2
In order to use (6) we need to consider a number of separate ranges for z and k. Let
A=2r'3/w, B =|(Ar)"*| so that each of Ba, AB?/r and A/B — 0 as r — co.

Range 1: 0 <z < Aand 1 <k < B. By (10) we have

kk_2
E(7 ) < nTxk_le_k‘” exp(ka + 2k /r),

since (A/r)F1 < (14 a)* < exp(ka), and (1 — z/r)F~*" < exp(—xk + zk2/r). Also,

exp(ka + zk?/r) < exp(Ba + AB?/r) =1+ o(1).

Hence
1 A B A B kk—Z
—/ > E(rpgz)dz < (1+0(1))ﬁ/ aFleThedy
T Ja=0 1 r Je=0j— k!
n
< (1+0(1)7¢0) (14)
Let 0} 4, be the number of non-tree components of G,/ which have k vertices and £ —1+u
edges. Then
1 E\Y 7\ k-1+u 7\ kr—k?
E(op,.) <> 3 (v, k (—) (1——) .
(Gk”)_kvezv(v )<2> r r
So

nkk*Q 0 ([ |2 u 7\ k—1+u T kr—k?
s < B2 () () (-2)
(k) < k! ;(2) T r

nkk—Q A k—1 e v ok 00 ka u
= -1 ,—xk wk*/r g
k! ( ) voee Z ( 2r )

<
r u=1
— \2—zk?/r) r k!
k
ﬂk_xke—kx
r k!

if r is sufficiently large. Thus,

1 rA B n Bk 00
i E(o,,) < — _/ ko—ka
r/m:o,; (k) < T2k§1 ! Foxe o
B
n 1
= pXp
n
< 2T—2:0(n/r) (15)

Ne]



Range 2: x < A and k£ > B. Using the bound

> Cryp < (16)
k=¢

~|3

for all £, x we get

=o(n/r). (17)

1A g 1 A
- < Z dr = = .
P LB Ceade< [ o=

=0 y—p

We next have to consider larger values of z in our integral. Now G contains at most
n(eA)* connected subgraphs with & vertices. To see this, choose v € V and note that G
contains fewer than (eA)* k-vertex trees rooted at v. This follows from the formula (29)

below for the number of subtrees of an infinite rooted r-ary tree which contain the root.
Also, from (3) we get S CV, |S| =k implies |S: S| > ké — k(k — 1) > k(r — k). Thus

k(r—k)
E(Cry) < n(eA)F (1 — ;)

< n(TeH—afw(lfk/r))k‘ (18)

Range 3: z > A and k£ < r/2. Equation (18) implies that for large r,

E(Cy,) < ne ®4/3, (19)
Thus
1 r/2
—/ 3" E(Ckz)dr < nre=*/3 = o(n/r). (20)
rJr=A k=1

Range 4: z > A and 7/2 < k < ky = min{pr,n/2}. It is only here that we use the
expansion condition (2). We find

E(Ch.) < ner)* (1 _ ;)W%gr <n (f)k (21)

So,

(&

L[S mewt < (9)" = o), (22)

k=r/2+1 r

We split the remaining range into two cases.
Range 5: x > A and k > k.

10



Case 1: n > 2pr, so that ky = pr.
If £ > ko we use (16) to deduce that

n

1 /r n
- / B k:ZpTE(Ck,z)dx < = oln/r) (23)
Part (b) now follows from (6), (14), (15), (17), (20), (22) and (23).

Case 2: n < 2pr, so that kg = n/2.
For larger r, we have to use the —x(G) term in (6), ignored in the previous case. Here (2)

implies k(G) = 1. We deduce from (19) and (21) that

. s e\"/2
Pr(G 4/, is not connected ) < 2ne +2n (—) . (24)
r
Then,
1 m &
= E(Crg)dz =1—-0(n~"
]\ X Bk (n™")
for any constant K > 0, and the proof is completed by (6), (14), (15), (17). a

Remark: It is worth pointing out that it is not enough to have »r — oo in order to have
Theorem 2, that is, we need some extra condition such as the expansion condition (2). For
consider the graph Gy obtained from n/r r-cliques Ci,Cy,...,C,) by deleting an edge
(xi,y;) from C;, 1 <4 < n/r then joining the cliques into a cycle of cliques by adding edges
(yi, 2541) for 1 <4 < n/r. It is not hard to see that

mst(Go) ~ = (¢(3) + 5

if r — oo with 7 = o(n). We conjecture that this is the worst-case, that is
Conjecture: Assuming only the conditions of Theorem 1,

n

mst(G) < (1+o(1)) (g(3) + %) .

2.1.1 Proof of Theorem 3

We consider M, fn) first. We prove the equivalent of (4). For this we need a technical lemma.

Lemma 3 Assume s1,S9,...,8, >0 and s =8, + Sy +---+ s, then
1 1 n n
35 log, s > 5 > silogy s+ > min{s;, si41}- (25)

(Here s,.1 = s1 and s;log, s; = 0 when s; =0.)

11



Proof We prove (25) by induction on n. The case n = 2 is proved in [3]. Assume (25)
is true for some n > 2 and consider n + 1.

1 n+1 n+1
A = 5 Z S; 10g2 S; + Z min{si, Si+1}
=1 =1

1

< —(s— Spy+1)logy(s — spt1) + 35n+1 logy Sp41 + min{s,, sp+1} + min{s,11, $1} — min{s,, s}

2

by induction.
Case 1 min{sy, sp, Sp11} = s1:

1 1 _
A < 5(8 — Spi1) logy(s — Spi1) + ian logy Spi1 + min{s,, spi1}

1 )
< 5(3 — Spa1)1ogy(s — Spa1) + g Snt logy Spv1 + min{s — Spi1, Sni1}

1
< §slog2 5.

Case 2 min{sy, $p, Sp11} = Sp: similar.
Case 3 min{si, Sp, Snt1} = Sni1:

1 .
A < 5(8 — Spy1) logy(s — spy1) + g Snt1 logy Spt1 + 28,41 — min{s,, s1}
1 1
< 5(3 — Spy1)10gy (s — Spy1) + g Snt logy Sp+1 + Snt1
1 .
= 5(5 — Spy1) logy(s — spy1) + g Sn logy Spt1 + min{s — Spy1, Spa1}
1
< 25 log, s.
O
Now consider S C V,,, with |S| = s. We now prove by induction on s that
S contains at most 3slog, s edges. (26)

Let S; be the set of vertices = € S with z, =i. Let s; =|S;|,i=1,2,... ,n. Each S; can
be considered a subset of V;,, 1 and we can assume inductively that each S; contains at
most %si log, s; edges. Therefore S contains at most A edges and (26) follows from Lemma

3. It follows that |S : S| > 2ds — slog, s and so Mfg has adequate expansion to apply
Theorem 2.

Now consider the spanning subgraph Mél,z of Mfﬁz Since each edge of Mﬁ is equally
likely to be in a minimum spanning tree 7', the expected number of ‘wrap-around’ edges

in T equals (n¢ — 1)/n < n4~1. Hence
mst(Mé’z,)L) < mst(Mé},)L) < mst(Mfg) +n®

which completes the proof. O
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2.2 Large Girth

We note first that all components of GG, with fewer than g vertices are trees. Here g denotes
the girth of G. Hence

g—1

1
‘mst(G) / Z E(74,)dp

=0,

< (27)

n
g

Here 7, is the number of (tree) components with & vertices in G, and n/g is an upper
bound for the number of components of G, with g or more vertices.

Let t(v, k) be as in Lemma 2. This time we have an exact formula for ¢(v, k) when & is
less than the girth g of G.

Lemma 4 Fork < g, (« ")
r((r—1)k)!
{0 k) = G — ks 20

Proof We use the formula
- T (G VT 1 (r—1)(k —1)
t(v’k)_i_zl(r—Q)i—i—l( ; )(r—2)(k—i)+1< k— i ) (28)

This follows from the formula
1 rm
- 2
(r—l)m+1<m> (29)

for the number of m-vertex subtrees of an infinite rooted r-ary tree which contain the root
— see Knuth [8], Problem 2.3.4.4.11.  To obtain (28) we take each tree with & vertices
rooted at v and view it as an (r — 1)-ary tree with ¢ vertices rooted at v plus an (r — 1)-ary
tree with k — ¢ vertices rooted at the largest (numbered) neighbour of v. Let

; r—2 z+1<(r_il)i> (r—2)(li—i)+1<(r_k1)—(k;_i)>'

Then

M

[Sum from i = 0 as opposed to i = 1 in (28).

]
i - iim&_ﬁn)(r—z)(kl—z'>+1<(T_k1)—(kz'_i)>xk

- é (; - 21)i+ 1 <(T_¢1)i>xi,§ (r— 2)(k1—i) +1 <(T _zj)fi_i)>wk‘i
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where

1 ftit1)
Bt(x)=zti+1< | )ac

i=0 t
is the Generalised Binomial Series. The identity

x5 (ti—f—s)i
-y ("
—~ {1+ s )

1=0

is given for example in Graham, Knuth and Patashnik [6]. Thus,

= (r—12)k+2<(r_1lzk+2>'

t(v, k) = a — m ((r —kl)k>_

The lemma follows from

We may now prove the first part of Theorem 4. We have

_ /Ozztvk kL1 — p)rh-2kt2gy,
“n r((r —1)k)! (k —D!((r —2)k +2)!

- Zk(k—l)!((r—?)k-l—?)! ((r — Dk + 2)!

k=1
g—1

- ,czl k((r — 1)k n 1)((7" “ 1k +2)

T—l 22 k+p (k +2p)
where p = 1/(r — 1). Theorem 4 now follows from (27) and

r > 1 3
(r—l)zzk(k+p)(k+2p) = 7"—1 Zk

k=g
—_— d
(r—1)2 /_(]1 Lo

T 1

(r—1)22(g —1)?
1

2g.

IN

IN
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Proof of Corollary 5 Start with a 2-edge-connected r-regular graph with girth at least
g — 2, and form a new graph H by ‘splitting’ an edge so that two vertices have degree 1
and all the others have degree 7.

Let F' be a set of edges in G which meet each cycle of length less than g. From
the graph G, form a new graph G as follows. For each edge f = {u,v} € F, take a
new copy H; of H and identify the vertices v and v with the vertices of degree 1 in
H;. Then G has girth at least g, |V(G)| = n+ |F|(V(H)| — 2) = (1 + o(1))n, and
imsf(G) — msf(G)| < |F||E(H)| = o(n). =

2.2.1 Proof of Theorem 7

Our main tool here is a concentration inequality of Talagrand [14], see Steele [13] for a
good exposition. Let A be a (measurable) non-empty subset of R”. For x, 3 € R” with

18]z = 1 let

dA(X’ ﬂ) = ;Ielg Z ﬂel{xe?éYe}' (31)

e€E
and let
da(x) = sgp da(x, 5).
Talagrand shows that for all ¢ > 0,
Pr(X € A)Pr(ds(X) > t) < e /% (32)

(a) For a € R let
S(a) = {y € R¥ : mst(G,y) < a}.

Given x we let 7" = T'(x) be a minimum spanning tree of G' using these weights (7'(X) is
unique with probability 1). Let L = L(x) = (Z.erx2)'/2. Note that L(x) < n'/2. Define,
= B(x) by

0: otherwise

3 :{xe/L: eeT

Then for y € S(a) we have

mst(G,x) < mst(G,y)+ D>, (xe—ye)"
e€T'(x)

< mst(G,y) + L(x) Y Belpx, zy.)-

ecE

By choosing y achieving the minimum in (31) (the infimum is achieved) we see that

mst(G,x) < a+ L(x)dy(x, 3) < a +n'?dy(x, B).

15



Applying (32) with A = S(a) we get
Pr(mst(G,X) < a)Pr(mst(G,X) > a + n'/?t) < e ¥/ (33)

Let M denote the median of mst(G,X). Then with a = M and t = en'/?/r,

Pr(mst(G,X) > M + en/r) < 2e ™/, (34)
With a = M — en/r,

Pr(mst(G,X) < M — en/r) < 2e~™/4), (35)
Equations (34) and (35) plus r = o((n/logn)'/?) imply that

|M —mst(G)| = o(n/r)

and so it is a simple matter to replace M by mst(G) in (34), (35) to obtain (a).

(b) We change the definition of 3 slightly. For minimum spanning tree 7'(x) we let T (x) =
{eeT: x, <12logn/(yr)}. Then let

1/2
Ly(x) = (Z x2> < 1201 logn logn

ecTy o

Then define
ﬂ . Xe/Ll Tec T1
€71 0: otherwise
Also let
P(x) = Z Xe-
eET\Tl

Then for y € S(a) we have

mst(G,x) < mst(G,y)+ > (xe —ye)" + o(x)

ecTy

S mst(G, y) + Ll (X) Z ﬁel{Xe;ﬁye} + ¢(X)

ecE

By choosing y achieving the minimum in (31) we see that
mst(G, x) < a+ Li(x)do(x, 8) + 6(x).
Applying (32) we get

12n'2logn
L4n T logn +

e_t2/4.
) < (36)

Pr(mst(G,X) < a)Pr(mst(G,X) > a+1

16



We will show below that
Pr(¢(X) > en/(3r)) < ¢ 1/(2000gn)?), (37)
So putting a = M and t = eyn'/?/(36logn) into (36) we get
Pr(mst(G,X) > M + 2en/(3r)) < 2e=<7m/ 518408 n)%) 4 Pr((X) > en/(3r)).
On the other hand, putting a = M — 2en/(3r) and t = eyn'/?/(36logn) we get
Pr(mst(G,X) < M — 2en/(3r))Pr(mst(G,X) > M — en/(3r) + ¢(X)) < e V74
But

Pr(mst(G,X) > M — en/(3r) + 6(X)) > £ — Pr(6(X) > en/(3r)
and we can finish as in (a).
Proof of (37) Let
m(m,k,p) = G contains > m components of size k)
) < -
< ( —mr/2>
< mkpr/3

if p > po = min{1,12logn/(yr)}. Next let
p; = min{1,2'py} for 0 < i < iy = [logy py ]

and
en
Mpp = ——.
"7 6kpr(logn)?
Now
io—1 n
Z Z apipi+1
1=0 k=1
and so if
G,, contains < my,, components of size k for 0 <i < iy, 1 <k <n (38)
then

-l n €n
Z Z3kr (logn)? = 3r

Furthermore, the probability that (38) falls to hold is at most

io—1 n i0—1l n
Z Z T mk,pp k pz < Z Z —eyn/(18(logn)?)
which proves (37). O

We now consider the values of the constants ¢, more carefully.
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Proposition 10 The constants ¢, satisfy co = 1/2, ¢ = 9/2 — 6log2 ~ 0.341, ¢4, =

9—3log3—mV3 ~ 0.264 and c5 = 15—10log2 — 51 /2 ~ 0.215; and in general, for r > 3,

cr = rzg;g g(w?), where g(z) = (mz;?Q log(ﬁ) + % and w = 2™/ (r=1)

Proof Let X, denote the sum in Theorem 4, so that ¢, = rX,. Note first that

00 .Qik

i k(k+1)(k+2)
< (1 1 1
=2 (E_k+1+2(k+2))

1] 1 ) 1(1 ( 1 ) >+ 1 ! ( 1 > 2
= —lo ——\lo -z — | lo —T— —
2 %\1-2) 2\ ®\1 222 \ 8\1_ 2 2

Thus 5 = 7. Also, for 7 > 3, note that ™' =1 and 14+ w +--- 4+ w2 = 0. Hence, for
r>3

1 r—2 i
Br=r=1) Wzl)k k(k+1)(k+2) J.;g(‘” )

Forr =3, w=—1so0
3
%3 =g(1) +9(-1) = ; — 2log2,

and thus c3 is as given. For r = 4 we find after some calculation that

But ¥, = 2 + 2Re(g(w)) and so ¢4 is as given. For r =5, w =4 and we find that
Y5 = g(1) + g(3) + g(=1) + g(—i) = 3 — 2log2 — 7/2,

and so cs is as given. O

Proposition 11 For any r > 2,

() r¢(3)
Pl TS o

Also

o =13 () @

S\ r—1
T T T

B R e e
Both of these results show that ¢, ~ ((3)/r as r — oc.
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Proof We may write

o0

G =r(r—1)" 2 (k(k+1/(r = 1))(k+2/(r = 1))

It follows that ¢, < 5y2¢ (3), and

&> rr— 1) (1 Til)_l (1+ rfl)_lg(?,) _ Tilg(:s).

Also, for any 0 <z <1

gl(k (k +12)) gl i —z/k)! ]i(—x)k_QC(k).
Hence, for any a > 1
= ,i(‘”“)”@“ —1)¢(k).
Thus
o =13 () @

= O P T

It remains only to prove Propositions 8 and 9.

Proof of Proposition 8 We estimate the maximum total weight of edges that can be
deleted without increasing the number of components, which are all cycles. Let C be the
random number of k-cycles in G, 2. Then using the configuration model we can prove that
for k > 3, E(Cy) = (1+ O(£))z. So the expected ‘savings’ from k-cycles is

(v ()1 (0 (8)) et

Hence the total expected savings from cycles of length at most £ is

0 (5)) 54 = (10 (2)) et 0w
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Take k ~ n/+/logn. Then the total savings is at least

(1 +0 <%>> (logk + O(1)) = logn + O(y/log ),

and is at most this value plus n/k ~ /logn. a

Proof of Proposition 9 Consider the complete graph K, with independent edge
lengths X, on the edges e, each uniformly distributed on (0,1). Call this the random
network (K,,X). Form a random subgraph H on the same set of vertices by including
the edge e exactly when X, < p, and give e the length X./p. We thus obtain a random
graph Gy, with independent edge lengths, each uniformly distributed on (0, 1). Call this
the random network (H,Y). We observe

mst(K,,X) 1 <pmsf(H,Y) < mst(K,,X).

(H connected)

The theorem now follows easily from the fact that that mst(K,,X) — ((3) as n — oo, in
probability and in any mean [4, 5]. O

Acknowledgement We would like to thank Noga Alon, Bruce Reed and Gunter Rote
for helpful comments.

References

[1] F. Avram and D. Bertsimas, The minimum spanning tree constant in geometrical prob-
ability and under the independent model: a unified approach, Annals of Applied Prob-
ability 2 (1992) 113 - 130.

[2] B. Bollobas, Random Graphs, Academic Press, 1985.

(3] B. Bollobés and I. Leader, Ezact face-isoperimetric inequalities, European Journal on
Combinatorics 11 (1990), 335-340.

[4] A.M. Frieze, On the value of a random minimum spanning tree problem, Discrete
Applied Mathematics 10 (1985) 47 - 56.

[5] A.M. Frieze and C.J.H. McDiarmid, On random minimum length spanning trees, Com-
binatorica 9 (1989) 363 - 374.

[6] R.Graham, D.E.Knuth and O.Patashnik, Concrete Mathematics, Addison Wesley 1989.

[7] S. Janson, The minimal spanning tree in a complete graph and a functional limit the-
orem for trees in a random graph, Random Structures and Algorithms 7 (1995) 337 -
355.

20



(8] D.E.Knuth, The art of computer programming, Volume 1, Fundamental Algorithms,
Addison-Wesley, 1968.

[9] L. Lovéasz, Combinatorial Problems and Ezercises, North-Holland, 1993.

[10] C.J.H. McDiarmid, On the method of bounded differences, in Surveys in Combina-
torics, ed J. Siemons, London Mathematical Society Lecture Note Series 141, Cambridge
University Press, 1989.

[11] B.D. McKay and N.C. Wormald, Asymptotic enumeration by degree sequence of
graphs with degrees o(n?), Combinatorica 11 (1991) 369 - 382.

[12] M. Penrose, Random minimum spanning tree and percolation on the n-cube, Random
Structures and Algorithms 12 (1998) 63 - 82.

[13] M. Steele, Probability Theory and Combinatorial Optimization, STAM 1997.

[14] M.Talagrand, Concentration of measure and isoperimetric inequalities in product
spaces, Publ. Math. THES 81 (1995) 73 - 205.

[15] D.B. West, Introduction to Graph Theory, Prentice Hall, 1996.

21



