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1 Introduction

The most well-known matching problem in recent popular culture comes from J. K. Rowling’s

Harry Potter series [Rowling, 1998]. Each year, roughly 40 new first-year students at Hogwarts

School of Witchcraft and Wizardry are assigned to one of the residential Houses (Griffindor,

Ravenclaw, Hufflepuff and Slytherin). This duty is performed by the magical Sorting Hat,

which considers each student in turn and determines the best match for that student among

the four Houses. The Sorting Hat uses its magical perception to assign students to a house that

best matches their personality. However, we also notice that the assignments split fairly evenly,

with each House receiving about 5 girls and 5 boys. Perhaps this house distribution and gender

balance reflects a secondary goal of the Sorting Hat.

A similar sorting occurs annually on college campuses across the United States. The past

two decades have witnessed the rise of the first-year seminar, a curricular strategy to help

students transition from high school to college [StateUniversity.com, 2011]. A seminar is a

small course that emphasizes active learning, discussion and exchange of ideas. First-year

seminars leverage the closeness of this format to introduce the paradigms and standards of

higher education. Additionally, first-year seminars at some institutions also strive to develop

community within the classroom, the student body, and the institution as a whole. Many

colleges devote considerable effort in assigning students to these seminars, trying to create an

immediate sense of belonging, just as the fictional Sorting Hat achieves at Hogwarts.

This paper describes the development and implementation of an automated procedure for

assigning first-year students to seminars at Macalester College. This solution, which we call the
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Mathematical Sorting Hat, was adopted by Macalester College in 2009. It is used annually to

match incoming students to seminars. The Hat models this matching problem using a weighted

bipartite graph that captures both the student preferences and college constraints. We run

the well-known Hungarian algorithm to find a minimum weight perfect matching of this graph.

This matching corresponds to an optimal assignment of students to seminars.

When run on historical data, the Hat finds student assignments that are quantitatively

better than the manual assignments used in those years. In the three years since adoption, the

Hat has produced high quality matchings of students to seminars. The algorithm, implemented

in Matlab, matches roughly 500 students to seminars in about 70 seconds on a 2.8 GHz Mac

Pro. It saves 40 person-hours of labor. It also provides repeatability and customization. The

goal of this paper is to explain the modeling process which allowed us to convert this applied

problem into a classical optimization problem. Many colleges are faced with similar assignment

problems, and we hope that this paper inspires others to consider automated methods.

This paper is organized as follows. In Section 2, we quickly survey matching problems and

their recent applications. We then give a historical discussion the First-Year Course Assignment

Problem (FYCAP) at Macalester College. In Section 3, we develop our weighted bipartite graph

model for FYCAP. Section 4 reflects on our solution, and discusses some possible generalizations.

Finally, Appendix A collects some implementation notes concerning repeatability, missing data

and fairness. The code for the Mathematical Sorting Hat is available on the COMAP website.

2 Background

2.1 Matching Algorithms and their Applications

Before discussing our matching problem, we describe some recent applications of matching

problems and their variants. Among the most prominent examples is the National Resi-

dent Matching Program (NRMP) [National Resident Matching Program, 2011], which places

30, 000 graduating medical students into hospital residencies each year. This is an exam-

ple of a stable marriage problem. The preferences of both applicants and hosting institu-

tions are taken into account. The algorithm finds a matching that is stable in the sense

that no two matched pairs would unanimously agree to switch assignments. Since 1998, the

NRMP uses an applicant-proposing deferred-acceptance algorithm ([Gale and Shapley, 1962]

and [Roth and Peranson, 1999]) to find this stable matching. This procedure gives applicant

preferences a slight edge over institutional preferences. Indeed, there is an inherent asymmetry

2



to this problem, since the parties doing the “proposing” would never do better (and may do

worse) if the roles were reversed.

Stabling matchings have also been used to improve the annual assignment of 90, 000 teens

to public high schools in New York City [Abdulkadiroǧlu et al., 2005]. This implementation

employs the same stable matching strategy used by the NRMP. However, the algorithm has

been adapted to co-exist with previous mechanisms, such as lotteries and separate offers from

specialized schools. These alterations do lead to some mathematically unstable matchings,

which must be tolerated in a complex system with legacy procedures.

Dorm room allocation is another problem relevant to campus life. In the standard formu-

lation, students may choose to remain in their current room, or enter the applicant pool. Each

applicant is randomly assigned a priority (perhaps weighted by seniority). In the simplest algo-

rithm, applicants choose an available dorm room according to the priority ordering. However,

this algorithm leads to an inefficiency: many students will opt to remain in their current room,

for fear of ending up in a worse option. A simple and theoretically superior extension was

proposed in [Abdulkadiroǧlu and Sönmez, 1999]. The priority queue is created as before. Now,

an applicant can request an occupied dorm room, at which point the current occupant moves

to the top of the queue, directly in front of the requester. The current occupant can choose a

new room (possibly requesting another occupied room, which pushes that occupant to the top

of the queue), or decide to remain in his current one.

Recently, Abraham, Blum and Sandholm [Abraham et al., 2007] designed a program to

improve efficiency in matching donors to recipients in kidney transplants. Excepting close

family members, finding a compatible match for a potential recipient is very difficult. A recipient

may have a friend who is a willing donor, but who has an incompatible tissue type. In this

case, the recipient-donor pair attempt to find another recipient-donor pair for which a cross-

transplant would be a better match. The algorithm also tries to connect larger chains of people,

though the logistics of executing multiple simultaneous transplants becomes a limiting factor.

The first cross-transplant using a match from this algorithm was performed in December 2010

[Emspak, 2010].

Finally, we mention that the Sorting Hat of Hogwarts appears to be performing an on-line

weighted bipartite matching algorithm. In an on-line algorithm, we must process the informa-

tion and make decisions as we go, rather than considering the whole input before making any

assignments. An on-line algorithm is forced to make decisions that ultimately may not be glob-

ally optimal. Indeed, it has been shown [Khuller et al., 1991] that no on-line weighted bipartite

matching algorithm can achieve the performance of an optimal off-line algorithm (which has
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access to all of the data) for all inputs. However, this result should not affect our faith in the

Sorting Hat: a magically sentient hat is probably not bound by the same rules as a computer

algorithm.

2.2 The Assignment Problem

The Assignment Problem (cf. [Cook et al., 1998]) is the matching problem that is best suited

for our seminar assignments. Suppose that we have n workers and n jobs to be filled. Each

worker is qualified for a subset of jobs, and his salary varies depending on the job assigned (he

may have a higher certification for one job versus another). The objective is to find a matching

of workers to jobs that minimizes total cost.

We recall some standard terminology from graph theory (cf. [West, 2000]). A graph G =

(V,E) consists of a set of vertices V along with a set of edges E consisting of pairs of vertices.

When v1, v2 ∈ V and e = (v1, v2) ∈ E), we say that v1 and v2 are adjacent and that edge e

is incident with both v1 and v2. A matching M of G is a set of edges such that each vertex

is incident with at most one edge. When a vertex v is incident with an edge in M , then we

say that M covers v. A maximum matching is one of maximum size and a perfect matching is

one that covers all vertices. A perfect matching is also a maximum matching, but the reverse

statement is not true (for example, consider a graph on an odd number of vertices).

In the Assignment Problem, we create a graph with one vertex per worker and one vertex

per job. We add an edge between worker x and job y whenever x is qualified to perform job

y. This results in a bipartite graph whose vertex set can be partitioned into disjoint sets X,Y

so that every edge has one end in X and the other in Y . Finally, we address the cost of a

matching. Our workers earn different salaries, depending on their job. We model the cost using

a weighted graph, where each edge e ∈ E is assigned a weight we, corresponding to the cost of

that assignment. Our objective is to find a perfect matching of minimum weight.

This optimization problem can be solved by the Hungarian algorithm, which was developed

by Kuhn by extending the work of the Hungarian mathematicians Kőnig and Egerváry (cf.

[Cook et al., 1998, Evans and Minieka, 1992]). The fundamental strategy of this algorithm (as

well as many other matching algorithms) is to search for augmenting paths. Suppose that you

start with a matching M on a graph G. An M -alternating path is a set of successive edges

of G which are alternately in M and not in M . An M -augmenting path is an M -alternating

path that begins and ends at uncovered vertices. Such an augmenting path identifies a series

of swaps that results in a larger matching. Essentially, the Hungarian algorithm considers
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a series of subgraphs G1 ⊂ G2 ⊂ G3 ⊂ · · · of our bipartite graph G. On each graph Gk, we

attempt to find a perfect matching, using an augmenting path algorithm. If no perfect matching

exists, we add enough edges (of minimal additional cost) to get around a current obstruction to

obtain Gk+1, and then repeat the process. COMAP published a detailed and accessible module

[Gale, 1978] on the optimal assignment algorithm that provides an economic interpretation of

the procedure. (This module considers the maximum weight assignment problem, but that

formulation is equivalent to the minimum weight version via multiplication by −1.)

2.3 First-Year Courses at Macalester College

First-year seminars became mandatory at Macalester College in 1994. Every department offers

one or more first-year seminars, called First-Year Courses (FYCs). The content of the seminar is

discipline specific: recent seminar topics include global health, the social structure of the World

Wide Web, representations of vampires, and the American West. Regardless of the topic, all

FYCs develop writing skills and critical thinking. The professor also becomes the students’

academic advisor, meeting with the students before the semester begins, and coordinating

various social functions. Some FYCs are residential (at the request of the professor), with

members of the seminar housed in close proximity of one another. Needless to say, the FYC

experience is a very influential part of the student’s social and academic transition to Macalester.

Each year, the responsibility for matching students to seminars belongs to the Office of

Academic Programs. The assignment procedure is as follows. A typical year has roughly 500

first-year students and 35 FYCs. The incoming students read the seminar descriptions and then

rank their top four choices. Academic Programs compiles these preferences, and then matches

students to seminars, while adhering to some modest constraints on the distribution of students

to seminars.

Prior to 2009, the assignment was performed by hand. Each student’s preferences were listed

on a sheet of paper, which were then organized into piles (spread on the floor!) representing each

seminar. Much like the augmenting paths of the Hungarian algorithm, staff members would

look for chains of swaps to improve the overall profile of the current assignment. The entire

process consumed 40 person-hours before the staff was satisfied with the assignment. Figure 1

shows the historical results for these manual assignments from 2003 to 2008. On average, the

Office of Academic Programs was able to place roughly 87% of the students into their first or

second choice.
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Figure 1: Distributions of manual assignments by the Office of Academic Programs, 2003–2008.

2.4 The Collaboration

We briefly recount the unfolding of the collaboration between the authors and the Office of

Academic Programs. The interfacing of mathematics with a real-world application never occurs

in a straight line. In particular, adopting new technology can be unsettling. Therefore, the

authors purposely developed the collaboration in stages. Ultimately, this collaboration between

student, faculty and staff has been a particularly rewarding experience for all involved

The project was conceived by the second author in Fall 2008 while serving as the teaching

assistant for a first-year seminar in discrete mathematics. In one of the first class meetings, the

professor introduced graph theory by describing the connection between graph matchings and

seminar assignments. With his interest piqued, the second author suggested this topic for his

project in the senior seminar on combinatorial optimization, taught by the first author. This

application was a natural fit for the course, and the project was initiated. The fall semester

was spent exploring and implementing matching algorithms.

In Spring 2009, the authors scheduled a meeting with the Office of Academic Programs to

discuss the project. While the authors hoped that our implementation would eventually be

adopted, it was crucial to “sell the client” on this solution. In the initial meeting, the authors

described the project in broad strokes. Academic Programs was supportive of our effort, and

agreed to evaluate the implementation once it was complete. They provided information on their

constraints, their methods, and their objectives. They also agreed to proved a historical data
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set from 2004 (since that cohort of students had already graduated). Using these specifications

and test data, the authors crafted the Mathematical Sorting Hat implementation. The Hat

slightly out-performed the manual assignments from 2004, and was deemed a success.

In Summer 2010, the project became a true partnership between the authors and the Of-

fice of Academic Programs. Encouraged by the initial results, Academic Programs agreed to

collaborate on the next version of the Hat. In a series of meetings, we fully mapped out spec-

ifications and requirements. Academic Programs provided feedback on the model, and further

refined their constraints to accurately reflect their needs and priorities. We agreed upon the

data format for input (a comma-separated value format). The second author set to work to

implement these changes, creating a fully featured Mathematical Sorting Hat.

In July 2010, the Mathematical Sorting Hat was used to create an assignment for the incom-

ing first-year students. Simultaneously, the Office of Academic Programs developed a manual

assignment. Once again, the Hat’s assignment was slightly better. Convinced of the benefits of

the Mathematical Sorting Hat, Academic Programs opted to use the Hat’s assignment. Since

then, Academic Programs has fully embraced the Hat’s assignments, and no longer spends any

effort on manual assignments.

3 The Mathematical Sorting Hat

From the college’s perspective, a successful assignment results in seminar enrollments that are

a microcosm of the college, in terms of gender balance and international diversity. From the

student perspective, a successful assignment will place students in the seminars that they most

desire. In other words, the First-Year Course Assignment Problem (FYCAP) is a constrained

optimization problem in which we try to maximize student satisfaction while respecting con-

straints on seminar enrollment.

The authors converted FYCAP into an assignment problem, mapping students to workers,

and seminars to jobs. This presented two main challenges. First, we had to devise a bipartite

graph structure that enforced all of the college constraints. Second, we had to develop an edge

weighting scheme that both encoded student preferences and resulted in an assignment where

most students receive their first or second choice. We refer to the resulting weighted bipartite

graph as the Mathematical Sorting Hat.

Before describing the structure of the Hat, we list the performance results of the automated

seminar assignment for the last three years. Figure 2 shows the assignments, which compare

favorably to the manual assignments in Figure 1. Over the last three years, the Hat has placed
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Figure 2: Distributions of assignments produced by the Mathematical Sorting Hat, 2009–2011.

roughly 91% of the students into their first or second choice. The Hat’s best year (2010) is

comparable to the best manual year (2006). Indeed, we expect the Mathematical Sorting Hat

to produce high quality assignments. We were actually pleased to discover that the Hat’s

assignments were not significantly better than the historical manual assignments. This means

that the hours of effort put into these assignments truly paid off.

3.1 Constructing the Mathematical Sorting Hat

We describe the bipartite graph G = (V,E) with vertex partition V = X ∪Y , where X consists

of students and Y consists of seminar seats. Suppose that we have r students and s seminars,

where each seminar has enrollment limit of t students, and r ≤ st. The r students correspond to

vertices X = {x1, x2, . . . , xr}. If r < st, then we add st−r dummy vertices x′r+1, x
′
r+2, . . . , x

′
st to

X. For 1 ≤ i ≤ s, let Yi = {yi,1, yi,2, . . . yi,t} represent the t seats in seminar i. Let Y = ∪ti=1Yi

be the set of all seminar seat vertices. We now have a natural mapping between FYCAP and

an Assignment Problem: the students are workers and the seminar seats are jobs.

The Office of Academic Programs provided 4 constraints for the enrollment of each semi-

nar. First, every seminar must contain at most 16 students. Second, we enforce a minimum

seminar size of 10 students. Third, no seminar can have a majority international enrollment (at

Macalester, international students make up 11% of the student body). The final constraint is

a modicum of gender balance. Having already placed restrictions on international students, we

decided to enforce gender balance only for domestic students. Therefore, in each fully enrolled
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seminar, 4 seats are reserved for domestic women, and 4 seats are reserved for domestic men.

For seminars with fewer than 16 students, we only require 3 domestic women and 3 domestic

men.

♀ ♂

dummy (empty seats)

seats

Figure 3: The edges connecting the 16 seats of a seminar to the 4 types of students: domestic

female, international, domestic male and dummy students. The edge structure ensures that the

seminar assignment will adhere to the college’s constraints.

We enforce these four constraints via the edge structure of the graph. Figure 3 shows the

local graph structure of the Mathematical Sorting Hat. It depicts the 16 seminar seat vertices

for one seminar, along with one student of each type that is interested in the seminar topic. We

divide the seminar seats into three categories, with 4 domestic female seats, 4 domestic male

seats, and 8 generic seats. Every domestic female student interested in this seminar is adjacent

to the 4 domestic female vertices and the 8 generic vertices. Likewise, interested domestic males

are adjacent to 4 domestic male seats and 8 generic seats. Finally, every interested international

student is adjacent to the 8 generic vertices.

Dummy students correspond to empty seminar seats. We allocate edges from dummy stu-

dents to enforce the minimum seminar size of 10. Therefore, every dummy vertex is adjacent

to the same 6 vertices in a given seminar. More specifically, each dummy vertex is adjacent

to one female domestic seat, one male domestic seat, and four generic seats. This allocation

allows the lower enrolled seminars to have a gender minimum of 3 students, while fully enrolled

seminars have a gender minimum of 4 students. If no assignment exists that adheres to these

size, international and gender constraints, then the matching algorithm will return a failure.

Table 1 summarizes the distribution of seats to students, according to type.
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total
USA

female

USA

male
international dummy

minimum

enrollment

USA female seats 4 4 0 0 1 3

USA male seats 4 0 4 0 1 3

generic seats 8 8 8 8 4 4

total seats 16 12 12 8 6 10

Table 1: The number of seminar seats adjacent to each student. The existence of edges depends

upon the category of the seat and the characteristics of the student. The minimum enrollment

per category is total seats minus dummy seats.

We reflect on the structure of the bipartite graph G = (X ∪ Y,E) that we have created.

By adding dummy students to fill empty seats, we have |X| = |Y |. The edges incident with

student vertices reflect their seminar preferences. The global structure of these student edges

also enforce gender and international balance. The edges incident with dummy vertices enforce

minimum seminar size. The dummy edge structure also mitigates the gender constraint for

lower enrolled seminars. The graph G always has a maximum matching (in terms of number of

edges of the matching). This maximum matching is a perfect matching if and only if there is a

valid assignment of students to seminar seats.

3.2 Modeling Student Preferences with Edge Weights

We use edge weights to capture student preferences. In this section, we describe how our

choice of weighting scheme influences the global characteristics of the optimal assignment. Let

(w1, w2, w3, w4) be the edge weights for the student choices. These weights satisfy w1 ≤ w2 ≤
w3 ≤ w4 since the Hungarian algorithm seeks to find a minimum weight perfect matching. We

give two simple examples to illustrate the impact of our weighting scheme. If we set wi = 1

for 1 ≤ i ≤ 4, then the algorithm will ignore student preference between acceptable seminars.

If we choose w1 = 1 and w2 = w3 = w4 = 100 (or any large number), then the algorithm will

maximize the number of students in their first choice, and treat the other options equivalently.

For 1 ≤ i ≤ 4, let Pi denote the percentage of students assigned to their ith choice. We

define the profile of an assignment to be (P1, P2, P3, P4). Using the average of the historical

results in Figure 1 as a guide, we find that Academic Programs requires that the assignment
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profile obeys the following inequalities:

P1 ≥ 59%,

P1 + P2 ≥ 87%,

P1 + P2 + P3 ≥ 97%.

(1)

The conditions of equation 1 are the primary criterion for measuring the quality of an assign-

ment. The secondary criterion, identified by the Office of Academic Programs, is the mitigation

of the number of students in their fourth choice. We did not directly incorporate these two cri-

teria as hard constraints to our matching problem. Instead, we considered multiple weighting

schemes, both experimentally and heuristically. A weighting was considered viable if it gave an

assignment that met these two criteria. These weightings were reported back to the Office of

Academic Programs.

We considered two types of weighting schemes (w1, w2, w3, w4). First, we considered the

naive weighting (1, 2, 3, 4). Second, we considered geometric weightings of the form (1, α, α2, α3)

for α > 1. Geometric weightings have a natural interpretation, described below. Figure 4

presents the resulting assignment profiles for four different weighting schemes on the historical

data from 2004. (The 2004 data was the initial data set provided by Academic Programs.)

The results for 2004 are typical for other historical data sets. Considering these results, we

see that all four weightings give assignments that satisfy the conditions of equation (1). All of

the geometric weightings improve upon the manual assignment performed in 2004. The naive

weighting achieves the largest percentage of first choice placements, but at the cost of assigning

far more students to their fourth choice.

In order to determine the best weighting, we use our secondary criteria: the number of

students receiving their fourth choice. Our geometric weightings for α = 3.5 and α = 4.5

reduce fourth choice placements to 1.55%, while α = 2.5 only achieves 1.75%. Larger values

of α give the same ranking as α = 4.5, suggesting that the graph structure obstructs further

improvements to the assignment. Deciding between α = 3.5 and α = 4.5 required consulting

with the Office of Academic programs. They had to decide whether it was worth moving 1.16%

down from first to second choice on order to move 0.57% up from third to second choice. The

Office of Academic Programs was pleased with the trade-off for α = 3.5, so we settled on this

geometric weighting for our final implementation.

We now give an intuitive interpretation of a geometric weighting scheme. It is simplest to

understand how a positive integer weight α affects the profile of an optimal matching. Therefore,

we start by considering such integer α weights. After explaining that case, we then describe

how sensitivity analysis led us to choose half-integer weights instead.
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Figure 4: The profiles of assignments for four different weighting schemes for historical data

from 2004. Geometric weightings are of the form (1, α, α2, α3) for the given value of α. The

naive weighting is (1, 2, 3, 4). The manual assignment was performed by the Office of Academic

Programs in 2004.

Consider the weighting scheme (w1, w2, w3, w4). We may always take w1 = 1 because mul-

tiplying all weights by a constant c > 0 does not affect the optimal matching. The geomet-

ric weighting scheme (w1, w2, w3, w4) = (1, α, α2, α3) has a natural interpretation in terms of

trade-offs made by swapping students between seminars. Suppose we have a student in her third

choice, and that we can move this student into her second choice via a series of swaps that moves

k other students down from first choices to second choices; see Figure 5. The corresponding

change in the weight of the matching is

k(w2 − w1) + (w2 − w3) = (k + 1)α− k − α2 = −(α− 1)(α− k).

Therefore the swap is acceptable whenever −(α − 1)(α − k) ≤ 0, or equivalently k ≤ α. This

inequality captures our willingness to move k ≤ α students down from their first to their

second choices in order to move a single student up from her third choice to her second choice.

The advantage to a geometric weighting is its translation invariance: we obtain an equivalent

inequality for the trade-off for moving k students down from their second choices to their third

choices in order to move one student up from her fourth choice to her third choice. (The naive

weighting does not have this invariance. In fact, its penalty fourth choices is not severe enough.)

Constraints for other swaps have similar interpretations.

Figure 5 also reveals a minor disadvantage to the simple geometric weighting (1, α, α2, α3) for
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1 1 1 α2

students

seminar seats

α α
α

α

Figure 5: Two potential assignments using a simple geometric weighting scheme (1, α, α2, α3).

The matching on the left has weight 3+α2 and the matching on the right has weight 4α. When

α < 3, the left matching has lower weight and when α > 3, the right matching has lower weight.

For α = 3, the matchings have the same weight.

α ∈ Z+. When α = 3, these two matchings have equal weight, so the Hungarian algorithm could

return either one as its optimal assignment. To avoid such ambiguity, we guide the Hungarian

algorithm to prefer the right hand matching by slightly perturbing the weights. In our final

implementation, we actually used the weight α = 3.5. This gives a consistent preference for

the right matching. This aligns with our goal to reduce the number of students assigned to

their third choice. A similar argument shows that we favor moving students out of their fourth

choice under comparable circumstances.

Sensitivity analysis of α revealed another reason to choose non-integer weights. We per-

formed this sensitivity analysis by running the Mathematical Sorting Hat on a range of α

values on our recent data sets. The results for 2010 are presented in Figure 6. (The results

for other recent years are similar.) For every α ≥ 4, the Hat returns the same matching. This

suggests that we have hit a bottleneck in the underlying graph structure. Overall, the behavior

with respect to α is quite stable. For α ≥ 2, the optimal matching changes at integer values

for α. This suggests that the optimal matchings are, in fact, primarily shaped by the types of

trade-offs exemplified in Figure 5. The results are slightly more unstable for smaller α, with

an additional change at α = 1.5, probably due to beneficial 3-to-2 swaps. The stability of our

model may be related to the relative small size of the data set. For larger data sets, the stability

for α ≥ 2 might decrease due to additional opportunities for more exotic beneficial swaps. In

conclusion, our sensitivity analysis suggests that four our data sets, choosing half-integer values

of α gives the most stable results when α ≥ 2, while integer α value results give the most

unstable results. Therefore, we use half-integer values for α.

The last edge type to consider are those incident with dummy vertices. An assignment of

a dummy vertex corresponds to an unfilled seat in the seminar. The dummy vertices have no

preferences, so all of their edges will be assigned the same weight w5. We always prefer to

assign a real student to a seat, so the dummy weight should be much larger than w4 to ensure
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Figure 6: Sensitivity analysis for weight α on the 2010 data set.

that a real student is always given priority. For a near-geometric weighting, setting w5 = α4 is

sufficient.

In working with Academic Programs, we focussed on α = 2.5 and α = 3.5. These values do

result in high quality matchings. Moreover, this choice was instrumental in making Academic

Programs comfortable with trusting the Hat. Indeed, these values were chosen because they

matched the historical assignment methodology. Client satisfaction is the ultimate requirement,

and we were happy to provide a solution that they could understand. Now that Academic

Programs has embraced the Hat, we may provide a broader spectrum of weights for them to

choose from in the future.

3.3 Running the Sorting Hat

We now describe how we use the Mathematical Sorting Hat code in practice, and discuss how

we handle the produced assignment. The Matlab/Octave code, along with a more detailed

user’s manual, is available on the COMAP website.

The Sorting Hat requires two inputs: the location of the data file, and the weight α. The code

constructs the weighted bipartite graph model described in this section, with one modification.

We actually create a complete bipartite graph. Edges from a student to an undesired seat are

given weight α5. The advantage to this modification is that the Hungarian algorithm always

returns an assignment. Indeed, since we now have a complete bipartite graph, there are n!
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perfect matchings. The Hungarian algorithm will return one of minimum weight.

After the algorithm completes (in time O(n3)), the Sorting Hat organizes the the results

into two human-readable formats: one list organized by student name, another list organized

by class name. Next, we decide (manually) whether is assignment is acceptable. We say that

an assignment is student-valid when every student is assigned to one of her preferred courses.

In order to assess this validity, the Sorting Hat produces a third output: a 5-entry vector of

the form (first, second, third, fourth, other). The first entry contains the number of students

assigned to their first choice. The second, third and fourth entries are populated similarly. The

final entry contains the number of students who were not assigned to any of their specified

choices. This final entry is zero if and only if the assignment is student-valid.

We say that the assignment is college-valid if it adheres to all of the college’s constraints

(class size, gender balance, international balance). It is possible for an assignment to be student-

valid and not college-valid (or vice versa). For example, suppose that there is a particularly

“unpopular” course, and only eight students include that course among their choices. In this

case, those eight students will be assigned to that course, but we will still be below the minimum

enrollment of ten students. When this occurs, there is no way to produce an assignment that is

both student-valid and college-valid: we must either accept the smaller seminar enrollment, or

force students into a course they do not want. As you would expect, Macalester would choose

the former option.

If there is an assignment that is both student-valid and college-valid, then the Sorting Hat

will find it. Indeed, when α is large enough, the penalties for failing to meet both criteria drive

the Hungarian algorithm to find this assignment. In the past three years, the Sorting Hat has

always returned a student-valid assignment. However, one year it returned an assignment that

was not college-valid. In particular, one seminar did not satisfy the gender balance requirement

because not enough men were interested in the course. In this case, Academic Programs allowed

this exception to their gender balance constraint (since placing students in unwanted courses

is considered unacceptable). In the future, Macalester will continue to bend its constraints

in situations like this. However, if we ever fail to find a student-valid assignment, Academic

Programs will resolve this by increasing the enrollment cap in a seminar to create a seat for the

unmatched student.

In conclusion, we reflect on the necessity of fourth choice preferences. Indeed, it is natural to

wonder whether an assignment exists so that every student gets one of their top three choices.

If such an assignment exists that is also college-valid, then the Sorting Hat will find it for

large enough α. Historically, this has not yet happened. It is easy to assess the impact of the
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college constraints on these fourth place assignments: we simply run the Sorting Hat on the

choice data, altered so that all fourth choice preferences removed. If the resulting assignment

is student-valid, it will be of lower weight than the assignment from using all four choices.

However, this lower weight assignment will certainly be even further from conforming with the

college’s constraints. So it is “better” for students and “worse” for the college. Regardless, it

is interesting to perform an assignment using only the first three choices. The result gives us a

way to measure the impact of the college’s constraints on student satisfaction.

4 Conclusions

We have described the conversion of the First-Year Course Assignment Problem at Macalester

College into a classical Assignment Problem. We developed a weighted graph capturing student

preferences and enforce college constraints. Through experimentation on historical data, we

developed an edge weighting scheme that produces assignments profiles that place 91% of the

students in their first or second choice. The Office of Academic Programs has been thrilled with

these results, both in terms of man hours saved, and in the quality of the assignment.

Looking to the future, we hope to improve our assignment process and produce higher

quality results. Along with adopting the Mathematical Sorting Hat, the Office of Academic

Programs now collects student preferences electronically. This combination opens the door to

handling more robust information about student preferences. For example, rather than a simple

numerical ranking, we could use a sliding scale to allow students to express interest in a seminar.

This would allow us, for example, to distinguish between strong a weak preferences between

a student’s first and second choice. We hope to work with Academic Programs to investigate

such a strategy in the coming years.

More broadly, other schools might consider adopting an automated assignment procedure

like the Mathematical Sorting Hat. For Macalester, we devised a bipartite graph model encoding

the constraints required by the college. Essentially, the ratio of seminar seats to constraints was

favorable enough that we could encode these constraints via the edge structure of the graph.

Other schools would have to develop a graph structure that reflects their specific priorities. It

is possible that their constraints are too complex to accurate model in a bipartite graph. In

this case, they should consider using a binary integer program to perform the assignment (cf.

[Bertsimas and Tsitsiklis, 1997]). Such programs offer great flexibility. While their solution

methods are more complicated, there are many integer program solvers available. Schools

must also be careful when developing their model, since too many constraints may lead to an
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infeasible program with no possible solutions. Therefore, additional constraints must be added

incrementally and judiciously.
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A Implementation Notes

In this appendix, we address some of the practical issues in using the Mathematical Sorting Hat

to assign students to seminars. Topics discussed include fairness, repeatability and managing

incomplete data sets.

A.1 Dependence on student ordering

The Mathematical Sorting Hat returns a minimum weight assignment. However, there is no

guarantee that this assignment is the unique minimizer. (In an extreme case, if 64 students gave

identical rankings to 4 available courses, then every matching would be minimal.) We believe

that most real world data will have multiple optimal assignments. Therefore, we must address

factors that influence the optimal assignment returned by the Hat.

The most important observation is that the Hungarian algorithm gives an advantage to the

students that are processed first. Indeed, in each iteration, the assignment algorithm makes

partial assignments and then tries to improve upon them via alternating paths. A student

processed early on will be placed into her first choice seminar. She will be moved from this

seminar only if there is an augmenting path that leads to a matching of strictly lower weight.

On the other hand, if a student desired a seat in an already full seminar, then she will only be

assigned there is there is augmenting path that improves from the current assignment.

In order to mitigate this effect, we preprocess the student data by randomizing the order.

We perform this randomization once, so that we may perform repeated runs on the data.

A.2 Performing multiple runs

We always perform multiple runs on the data. Early runs are used to validate the input data.

We typically perform multiple runs on the final data. In consultation with Academic Programs,

we tweak the constraints and then observe the impact on the quality of the matching. This

allows the Office of Academic Programs to respond to specific characteristics of the data set.
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For example, if we achieve a particular good assignment (say 95% in their first or second

choice), then Academic Programs may be interested in seeing the impact of greater gender

balance constraints. If the trade-off is not too bad, they may decide that this new assignment

is preferable. On the other extreme, they may want to understand the negative effect of a

particular constraint. In that case, we remove the constraint to get a base-line comparison.

A.3 Data validation

Prior to running the Mathematical Sorting Hat, the data must be validated. We perform

validation as a separate step, so that we may tolerate unusual students, as described below.

During validation, we check that every student has both gender and international status, and

has ranked four courses. Students who rank fewer than four courses are at an advantage.

Indeed, a student can only be assigned to one of the courses that she ranked. All data errors

are reported to Academic Programs, who then gives instructions for resolution.

A.4 Unusual students

In reality, there may be students who must be treated exceptionally. It is the prerogative of

Academic Programs to determine how to handle these students. For example, a transgendered

student does not fit into one of our designed categories. As another example, there may be a

student who must be assigned to a particular seminar, or who does not have the pre-requisites

for some of her choices. If a student must be assigned to a particular seminar, then it is easy

to do so: only provide that one choice for the student.

Our code requires that all entries are populated. So a transgendered student must be

assigned as 1 (female) or 0 (male, or perhaps ’not female’). When a student has ranked fewer

than 4 courses, the remaining ones are marked as ’None.’ Students with missing preferences

must be okayed by Academic Programs.

A.5 Missing student preferences

Every year, a handful of students do not submit preferences before the deadline. These students

are removed from the data set, and the assignment is performed. When the Office of Academic

Programs is able to get in touch with those students, they are allowed to choose from the

seminars that still have unfilled seats.
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A.6 Is the Hat strategy-proof?

Given a data set of student preferences, the Mathematical Sorting Hat finds an optimal match-

ing. However, we know very little about how the students go about ranking their courses. From

the student perspective, first-year seminar assignment is a game in which they are competing

against all other students. Is this game strategy-proof, meaning that the student has no incen-

tive to lie about their true preferences? Certainly a student who ranks a very popular course as

her fourth choice has virtually no chance of being assigned to that course. Could a student try

to take advantage of this behavior to increase her chance of being assigned to her first choice?

Or would this strategy have a greater chance of leaving her unassigned entirely, and forced to

choose from the remaining (undesirable) slots? This is an interesting open question, whose

answer might depend on the weighting scheme.
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