Symmetric Rendezvous Search on the Line
with an Unknown Initial Distance

Deniz Ozsoyeller, Andrew Beveridge and Volkan Isler

Abstract—In the rendezvous search problem, two robots at
unknown locations must successfully meet somewhere in the
environment. We study the symmetric version of the problem
in which they must use the same strategy. We provide a new
algorithm for the symmetric rendezvous problem on the line.
Our symmetric strategy has a competitive ratio of 17.686 for
total distance traveled and a competitive ratio of 24.843 for
total time. Both are improvements over the previously best
known algorithm, which has (time and distance) competitive
ratio of 26.650. Our algorithm can be adapted for bounded
linear environments and simple closed curves with the same
performance guarantees. It is also robust with respect to errors
in motion and differences in robots’ starting times. We confirm
our theoretical results through simulations, and show that our
algorithms are practical by reporting the results of real robot
deployments in indoor environments.

Index Terms—rendezvous search, symmetric rendezvous, lin-
ear search problem, lost cow problem

I. INTRODUCTION

The goal of rendezvous search is to design strategies for
robots whose locations are unknown to each other to meet
as quickly as possible. In this paper, we study the rendezvous
search problem with two robots in a one-dimensional environ-
ment. For example, robots dropped off from a plane may be
trying to find each other after deployment in linear environ-
ment, such as a road, a corridor or a river. This environment
could be infinite, circular or bounded. However, no obstacles
that disconnect the environment can reside between the robots,
otherwise rendezvous will never occur. The rendezvous search
problem has attracted significant attention from the research
community and studied in various environments such as line,
graph, circle (ring) and plane. A comprehensive introduction
can be found in the survey [1], and the monograph [2].

There are two primary versions of the rendezvous search
problem. In asymmetric rendezvous search, the players can
choose separate roles in advance and execute distinct strate-
gies. For example, one can remain stationary while the other
actively searches. In the second version, called symmetric
rendezvous search, the players must execute the same strategy.
In the literature, both of these versions have been studied on
various environments such as line, circle, graph and plane.
The symmetric version is appealing for robotics applications
because it eliminates the need for implementing a different
version of the strategy on each robot.

Deniz Ozsoyeller is with the Department of Computer Engineering, Izmir
University, Turkey and the International Computer Institute, Ege University,
Turkey. deniz.ozsoyeller@izmir.edu.tr

Andrew Beveridge is with the Department of
ics, Statistics and Computer Science, Macalester
abeverid@macalester.edu

Volkan Isler is with the Department of Computer Science and Engineering,
University of Minnesota. isler@cs.umn.edu

Mathemat-
College.

Suppose that two robots start at locations = and y in an
environment (). Let d(x,y) be the distance between these
points. For a rendezvous strategy S, let S;(z,y) denote the
(expected) distance traveled by robot ¢ before rendezvous,
1 = 1,2. The efficiency of a rendezvous strategy S is often
measured by its competitive ratio

Sl($7 y) + S2($7 y)
X
©.Y€Q d(z,y)

Here the denominator is the minimum possible distance trav-
eled before rendezvous. The competitive ratio of S is the worst
case deviation of the performance of S from this optimal
behavior. A strategy is said to be competitive if its competitive
ratio is a constant. We note that fixing a rendezvous location
in advance is not an efficient strategy: the robot deployment
locations could be quite close to each other other while
being very far from the predetermined rendezvous location. In
equation (1), the competitive ratio is given with respect to the
total distance traveled. Other measures such as the maximum
distance traveled can also be used.

When the robot strategies do not involve idle times, the
distance traveled is the same as amount of the time elapsed.
Herein we consider randomized strategies that intersperse
robot movements with robot idle times. Therefore, we consider
two competitive ratios: the distance competitive ratio and the
time competitive ratio. Since robot motion is more expensive
than robot idle time, we will focus on minimizing the dis-
tance competitive ratio of our fixed strategy. For symmetric
strategies, the distance competitive ratio also equals

25(@y) _ L S1@)
z,y€Q d(IC, y) z,y€Q d(fE, y)/2

We use this formulation in our analysis below.

Rendezvous on the line has been well studied for both
symmetric [1], [3]-[7] and asymmetric [8]-[12] versions.
In addition to its theoretical importance, rendezvous on the
line is important for robotics applications: the line can be
used to model environments such as railroads, cables or long
corridors. In the original symmetric formulation, the players
start knowing the initial distance 2d. For this formulation,
Alpern [1] introduced the following strategy: at the beginning
of each period, each player independently chooses a random
direction to call forward (F) and goes d units forward and
then 2d units in the opposite backwards (B) direction. This
randomized 1F2B moving pattern repeats until rendezvous
is achieved. Over the years, the analysis of this algorithm
has been improved, so that guaranteed competitive ratio has
been decreased from Alpern’s initial value of 5 to 4.5678 by
Anderson and Essegaier [3], to 4.4182 by Baston and Gal [9],
and to 4.39306 by Uthaisombut [5].

(D

In [9], Baston and Gal considered a symmetric rendezvous
formulation in which the initial distance is drawn from some
distribution with expected value E[2d] = p. They provide
a symmetric algorithm with expected meeting time 13.325,
corresponding to competitive ratio 26.650. For a distance
distribution with maximum distance D, Baston [4] developed
an algorithm with competitive ratio 1.71 + p/2D.

Herein, we consider rendezvous problems on the line with
no information about the initial distance. The players do not
share a global frame. The unknown initial distance case has
been investigated for asymmetric rendezvous [7], [12], but it
has not been well studied for the symmetric case. Baston and
Gal’s algorithm from [9] is agnostic of the distance distribution
and is therefore a 26.650-competitive algorithm (for both
distance and time) for this formulation.

The contributions of this paper are as follows. We provide a
new algorithm for linear symmetric rendezvous at an unknown
(and arbitrary) distance. This algorithm is an improvement
over the Baston and Gal algorithm: it is 17.686-distance com-
petitive and 24.843-time competitive. We provide simulation
results and experimental results from a robot deployment. An
interesting aspect of our algorithms is the randomization of the
distance traveled (in addition to the motion pattern) at each
round. Our simulations show that this randomization makes
the algorithm robust with respect to uncertainty in motion e.g.
due to errors in odometry.

Our algorithm (and its theoretical analysis) assumes that the
robots start at the same time. We investigate the significance of
this assumption in simulations which suggest that the compet-
itive ratio does not increase significantly even when the robots
start at different times. Finally, we adapt the algorithm for two
real world rendezvous tasks: when the linear environment is of
bounded length, and when the linear environment is a simple
closed curve (such as a circular loop).

The paper is organized as follows. In Section II, we present
an overview of related work. Next, we review a related online
problem in Section III-A, then study the linear symmetric
rendezvous problem in Sections III-B and III-C. We present
the simulations results where the robots start executing the
algorithm at the same time in Section IV-A and at different
times in Section IV-B. In Section V, we present extension to
circular and bounded environment and report results from real
experiments in Section VL.

II. RENDEZVOUS VERSUS RENDEZVOUS SEARCH

In the robotics literature, there are two classes of rendezvous
problems. The first version concerns robot tracking and nav-
igation towards a moving object (target) where the agents
can observe each other’s state. Therefore, the emphasis is on
control-theoretic aspects such as combining the kinematics
equations of the robot and the target. The target can be
another mobile robot, a satellite, a moving convoy or a
human. Sometimes, the desire to rendezvous is one-sided (for
example, an agent who wants to meet up with a moving
convoy). Moreover, the robot and the target can have different
features such as size, velocity, orientation, etc. One example
of this type of rendezvous is the optimal control problem for
minimum control energy needed to reach a moving target [13].

The parallel navigation law is one of the most widely used
closed loop controls for the rendezvous of the robot with the
target. This approach combines the kinematics equations of the
robot and the target with geometric rules. The robot moves in
lines that are parallel to the initial line of sight (LOS), which is
the relative position vector connecting the robot to the target.
The parallel navigation rule states that the angle of the LOS
of the robot to the target remains constant at all times [14].
Therefore, the interception is considered only in the direction
of LOS. The robot may or may not know the environment
and the target maneuvers in advance. Usually, the robot has
a sensory system to detect obstacles and obtain the necessary
information on the target such as its position, linear velocity
and orientation. The information gained on the target (and the
obstacles) is used in the rendezvous guidance algorithm.

In this paper, we focus on the rendezvous search problem.
Similar to the rendezvous tracking and navigation problem
above, this deployment can be thought as establishing LOS
between robot-1 to robot-2 in a given environment. However,
the remaining formulation is quite different. The heart of
the problem is the lack of state information. The robots
cannot communicate, and do not have a (long range) sensory
system that allows them to determine the position of the other
robot (though they can detect rendezvous). The robots do not
necessarily know their current location and they do not (and
cannot) know the initial distance or direction to the other robot.

Another difference is that both robots actively work to
achieve rendezvous, compared to having an active robot and
an agnostic target. A third difference is that the robots have
identical properties; for example, they have the same size
and velocity. Our final, key limitation is that in symmetric
rendezvous search, the robots must execute the same strategy.

III. SYMMETRIC RENDEZVOUS ON THE LINE

The rendezvous problem generalizes the linear search prob-
lem, also known as the lost cow problem. In this formulation,
a single robot tries to find an unknown stationary object.
This linear search problem was originally solved in [15] and
that solution was rediscovered in [16]. This result was placed
into the framework of online algorithms in [17] (where it
was also generalized to M infinite rays radiating from a
common starting point). Our symmetric rendezvous algorithm
generalizes and draws inspiration from the lost cow problem.
Therefore, we review that linear search problem and then
describe of our algorithm and analyze its performance.

A. The Lost Cow Problem

Suppose that a near-sighted cow tries to find the only
gate in a long, straight fence. This gate is located at an
unknown initial distance d, either to the left or the right
of the cow. Any deterministic online algorithm for locating
the gate is equivalent to alternately searching to the left and
then to the right of the cow’s initial location z = 0. Such
a spiraling algorithm can be defined by a sequence of non-
negative numbers f1, fa, ..., where f; is the distance explored
to left (right) of the cow’s initial position in odd (even) round

i. For convenience, we set fy = 0. In the ith round, the cow
travels a total distance of f;_1 + f;.

The deterministic Spiral LostCow algorithm uses a doubling
strategy f; = 2°t!. Spiral LostCow is a 9-competitive algo-
rithm, and this is the best possible performance for a determin-
istic online algorithm. This competitive ratio can be improved
by introducing some randomness. The SmartCow algorithm
follows the same zig-zag strategy, except the distance traveled
in round i is 77, where € € [0, 1) is chosen uniformly at the
start of the algorithm. This dash of randomness smooths out
the worst case analysis. Beck and Newman [15] proved that
the value r ~ 3.591 guarantees competitive ratio of 4.591,
which is best possible. This result was rediscovered by Kao
et al. [18].

We now compare the rendezvous problem with the lost cow
problem. Instead of one mobile cow and a stationary gate, we
now have two mobile cows, initially separated by a distance
of 2d. The goal of the cows is to meet up anywhere along the
fence. The symmetric version of this problem requires that
both cows perform the same search algorithm. This forbids
deterministic strategies, since their synchronized movement
would prevent the cows from ever meeting.

B. The Symmetric Rendezvous Algorithm

We present our algorithm for symmetric rendezvous for an
unknown initial distance. Our algorithm uses randomization to
break the symmetry between the robots. We also use a motion
pattern which combines rounds 27 and 2¢ 4+ 1 of the Spiral
LostCow algorithm into a single round. This will guarantee
that, once the robot’s displacement is at least d units, the
probability of meeting in every subsequent round is 1/2.

We now describe the randomized itinerary of the robots.
Let 2d be the initial distance between two robots, as shown
in Figure 1. Without loss of generality, robot-1 is located at
x = 0 and robot-2 is located at 2d (though they are unaware
of their relative positions). We represent the configuration of
the robots as a point in R2, so that the initial configuration is
(0,2d). The robots do not know their initial distance or the
direction leading to the other robot. For omniscient robots, the
best offline algorithm would be for them to move towards each
other and meet at configuration (d, d). Hence, our competitive
ratio will be calculated in comparison with distance d.

To each robot, we associate a non-negative sequence
f-1, fo, f1, f2, ..., where f_1 = 0 (for convenience) and

fi=rtfori>0

where r > 0 is the expansion radius (to be optimized later)
and € € (0,1] is a uniformly distributed random variable.
The robots use the same expansion radius 7, but they choose
their values for € independently at the start of the algorithm.
The robot uses this random e value throughout the algorithm
(choosing a new € value in each round does not improve the
performance). As in the SmartCow algorithm, this random
variable mitigates the worst case competitive ratio, giving
an improved performance guarantee. Indeed, in [19], we
presented a variant of the SR algorithm without the random e.
That algorithm was shown to be 19.166 distance competitive

f2i-1 f2i+1 d 2d+f2i+1

2d+2i+1

2d+£2i+1

[l [l [l [l
T T T T T T T T T
2d-f

-f2i 0 £2i-1 2d-f2i-1 2d 2d+£2i+1

Fig. 1. Behavior in round 4. The robots start in configuration (f2;41,2d —
f2i—1). The current coin flips require both robots to move left-then-right
in the current round. FIRST: First phase movements. Robot-1 moves left
dy = r2iter 4 p2i—1te1 Robot-2 moves left dp = r2itez — p2i—ltez
SECOND: First phase idle time. To ensure synchronous rounds, robot-j waits
72t 4p2itl d; time units before starting the next phase. THIRD: Second
phase movement. Robot-1 travels right d3 = r-2*t€1 429+ 1+€1 and robot-2
travels right dq = r2*te2 4 2i+1+te2 FOURTH: Second phase idle time.
Robot j waits r2+1 4 p2i+2 _ g

and 26.888 time competitive. The addition of the randomized
parameter e results in better performance.

If we were to choose r = 2 (as in Spiral LostCow), our
symmetric rendezvous algorithm would yield an unbounded
competitive ratio. Intuitively, the growth of the distance trav-
eled overwhelms the probability of the rendezvous of the
robots. Instead of doubling 7, our algorithm increases the reach
fi of the robots by a factor r =~ 1.195 (the derivation of this
optimized value is presented in the proof of Theorem 1). Given
the initial distance 2d, set 6 € (0,1] and k € Z™ to be the
unique numbers achieving d = r*+9.

The algorithm proceeds in rounds, indexed by integers 7 > 0
(starting at < = O gives a more natural indexing). In each round,
the robot will alternate between moving and waiting. A round
is successful if the robots achieve rendezvous in that round;
otherwise it is unsuccessful. We describe the movement of
robot-1, who starts at x = 0. At each round ¢, the robot flips
a coin to determine its itinerary (right-then-left or left-then-
right) for this round. We divide each round into two phases,
according to the direction of movement. In the ith round, the
robot starts at one of x = =+ f5;_1, each with probability 1/2.
If the robot tosses heads, then in phase 1, it moves right to
the point z = f5; and in phase 2, it moves left to the point
x = — fo;41. If the robot tosses tails, it moves left to x = — fo;
in phase 1 and then right to © = f5; 41 in phase 2. At the end

Algorithm 1 SR: Symmetric rendezvous strategy on the line
for unknown initial distance.
1: r <4 1.195
2: € < random from (0, 1]
{Note that f(j) = /%< below}
31+ 0
4: coinFlip < random from {—1,1}
5: previousCoinFlip < coinF'lip
6: while checkRendezvous() != true do
7
8
9

if © = 0 then
Di,l — f(2Z)
. else if coinFlip = previousCoinFlip then
10: Di,l — f(27,) — f(QZ — 1)

11: else
13: end if

14: Wi,l — f(QZ) + f(QZ + 1) — Di,l

15: moveTo(coinFlip * f(2i))

16: wait(Wi.yl)

18: Wi72 — f(2l +].) + f(2’L + 2) — Di72
19: moveTo(—1 * coinFlip * f(2i + 1))
20: wait(Wm)

21 41 +1

22: previousCoinFlip < coinFlip

23: coinFlip < random from {—1,1}
24: end while

of an unsuccessful round ¢ > 0, the possible configurations
of the robots are (& fo;41,2d £ fa;41). This is also the initial
configuration for round ¢ + 1.

Let D;; (D;2) denote the distance traveled in the first
(second) phase of round ¢, and let D; = D; ;1 + D; o denote
the total distance traveled in the round. The value of D,
depends upon whether the coin flip in this round differs
from the coin flip in the previous round. If they differ, then
Di,l = le' — fQi_l. If they match, then Dl‘71 = fQ»L' + f2i—1-
(Note that these statements are also true for ¢ = 0 because
f-1 =0.) Regardless of the coin flip, D; > = f2;41 + f2i. The
distance traveled (the length of an itinerary) by a robot in an
unsuccessful round i is either D; = fo; 11 + 2fo; — fo;—1 or
D; = fo;11 + 2f2; + fo,—1, each with equal probability.

Recall that the robots use different e values for their
movements. In order to keep the robot motions in sync, we
introduce wait times after each movement (left or right). A
robot must assume the worst: that the other robot is using
e = 1, and therefore requires time 7T}, = r2t 4 p2itl g
phase 1 and time T} » = r?**! 4 r2i2 in phase 2. After each
movement, the robot will idle long enough to allow the other
robot to complete its current motion. Keeping robot motions in
sync guarantees that, once their displacement is large enough,
the probability that the robots meet is 1/2.

We summarize the activity of the robot in round 7. The robot
flips a coin. In phase 1, it moves distance D); ; and waits for
time W; 1 = T; 1 — D;1. In phase 2, it moves distance D; o
and waits for time W;o = T2 — D; 2. Assuming that the
round is unsuccessful, the time elapsed in round ¢ is T; =

T;1 + T;,2, independent of both the robot’s € value and the
coin flip. The algorithm terminates the first time that the robot
configuration is of the form (z,x). The pseudocode of the
strategy is presented in Algorithm 1. Our main result is the
following theorem.

Theorem 1: The optimal expansion radius for the symmet-
ric rendezvous algorithm is r ~ 1.195. This choice of r gives
an algorithm that is 17.686-distance competitive and 24.843-
time competitive.

We prove this theorem in the next subsection.

C. The Analysis

Performance analysis of Algorithm SR for d = r**?
depends upon the parity of k. The even case is slightly more
difficult to analyze, so we work through that analysis for the
distance competitive ratio. The remaining analyses (even time,
odd distance and odd time) proceed similarly. These analyzes
can be found in the accompanying technical report [19].

Henceforth, we assume that k& is even. We divide the
execution of Algorithm SR into four stages. Stage-1 is an
initialization stage whose length depends on the (unknown)
initial distance 2d = 2r*+°. This stage encompasses the early
rounds 0 < ¢ < k/2 — 1 in which the robots do not move
far enough to meet. The first round in which the robots might
meet is the k/2-th round. Stage-2 consists of only this critical
round. We define a separate Stage-3 for round k/2 + 1 as
well. The initial locations of the robots exhibit a transient
behavior in this round. Stage-4 contains all rounds after Stage-
3. In these later rounds, the initial configurations and the
rendezvous behavior are consistent, so we can compute the
expected distance traveled using an infinite sum.

In our analysis, we track the direction of movement (left-
then-right or right-then-left) of each robot. In Stage-2, we also
consider the relative size of 6 compared to €1, €5. In Stage-3,
we must pay close attention to the possible initial configu-
rations. Note that, starting at Stage-2, it is also necessary to
calculate the distance traveled at each round based on whether
the robots meet at this round or not.

We now introduce the variables used in our analysis. Let
R; be the event that the algorithm is still active in round i.
Assuming that R; holds, we define the following: S; is the
event that the robots successfully meet in round i; A; is the
event that robot-1 initially moves to the right (towards robot-
2) in round ¢; B; is the event that robot-2 initially moves to
the left (towards robot-1) in round .

Due to the symmetric strategies, the expected distance
traveled is identical for both robots. Therefore, we only
analyze robot-1. Still assuming that R; holds, we again define
Di=Di1+D;sandT; =T; 1 +T; 0 and W; = W; 1 +W, 0.

The algorithm is always active in the first round, thus
P[Ry] = 1. The probability that the algorithm is still active
in round 7 is the joint probability of the events that the
robots do not meet in the rounds up to round ¢. That is,
P[R;] = P[So A --- A S;_1] for i > 0. Restating our

observations from the previous section, we have

E[D; | Si] = E[faoir1 +2f2 | Si]

= (¥ L 2PHE[rc | Sy, (2)
BIT, |5 — 12 p2r2t 4% G)
EW;|Si] = E[T;|S:] —E[D; | Si. S

During Stage-1, we have E[r¢ | S;] = E[r¢]. During the later
stages, (i.e. when ¢ > k/2), the size of € and the event .S; are
dependent variables.

We are now ready to study the four stages of Algorithm SR
for even k. Sections III-C1, II-C2, III-C3 and III-C4 present
the distance analysis of stages 1-4 respectively. For clarity
of exposition, we defer evaluation of certain probabilities and
expectations until Section III-C5, where we prove the distance
competitive ratio for even k in our main theorem.

1) Analysis of Stage-1 for even k: Recall that d = r*+°
where § € (0,1]. We compute the expected distance traveled
during Stage-1. When 0 < ¢ < k/2 — 1, the combined robot
displacement is

PRt | p2ites < 9p2i42 < ok o 9pktd _ g

)

so the robots cannot meet during Stage-1. In other words,
PR =1=P[S;] for 0 <i < k/2—1.
Lemma 2: The expected distance traveled during Stage-1

satisfies
k/2—1 &

ZZ_; E[D; | Ri|P[R;] < (r+2) rzr_ 1

E[re].

Furthermore, the four final configurations (& fx_1,2d £ fr—1)
each occur with probability 1/4.

Proof. By equation (2),

k/2—1 k/2—1
> EDi|RIPIR] = Y E[Di|5i]P[S)]
=0 =0

k/2-1
= 3 (PP 2PE [5] -1

=0

k/2-1 ok

= (r+2)E[r] Z:O ¥ = (r+2) 5 Eir]

Considering round k/2 — 1, clearly each of the four final
configurations (+fx_1,2d £ fz_1) are equiprobable. O

2) Analysis of Stage-2 for even k: We bound the expected
distance traveled by a robot in the critical round, k/2. Unlike
Stage-1, the robots meet with nonzero probability. We sepa-
rately calculate the distance traveled in a successful and an
unsuccessful k/2-th round in Lemmas 4 and 5 respectively.
Adding these expressions gives the total expected distance
traveled in the critical round.

The robots cannot meet prior to the critical round, so
P[Ry/2] = 1. Furthermore, Sy A Ryj2 = Sj2 and
Skj2 A Ryj2 = Skya. We now capture the success and failure
conditions for the critical round. Define C' to be the event that
26 < €1+€2. We claim that the robots successfully rendezvous
in the first phase of round k/2 when A, A B, AC holds. Indeed,

the first phase of round %/2 results in rendezvous if and only
if 210 < € 472, or equivalently €5 > log,.(2r® — r<1). This
function is concave down for 0 < ¢; < 1, so the function lies
below the tangent line through the point (d,9). The formula
for this tangent line is e = 20 — €1. Therefore, if 20 < €1 + €
then 2r% < re1 4 pe2,

For simplicity of analysis, we use the tangent line ez =
26 — €; to approximate the function €5 = log,.(27% — 1) on
the unit square. The tangent line lies above the curve in this
region. Therefore, we use the event C' as a proxy for success
when Ay o A By holds. This yields an upper bound on
the expected distance traveled during the algorithm (because
we mis-categorize some rendezvous successes in round k/2
as failures). In calculations below, we find that the optimal
expansion radius satisfies 1 < r < /2. For these r values, the
error introduced is minor compared to the other factors.

With this in mind, when the event Ay /o A By /o holds, we
define success to coincide with event C. This results in an
upper bound on the competitive ratio, due to the resulting
approximation. We note that the event C' will continue to play
a role in our analysis of subsequent stages.

Lemma 3: The probability that the critical round is success-
ful is

B[S,z = (1 + P[C])/4.

In addition, the ending configuration x = (x1,x2) for an
unsuccessful critical round satisfies

Plz = (= frt1,2d — frg1) | Skp2) = 1/4,
Plz = (fer1,2d + fry1) | Skpa) = 1/4
Plz = (—fes1,2d + fr1) | Skpe] = P[C]/4.

Proof. The robots can rendezvous in two ways. The first way
is when they both move away from each other in Phase-1 of
the round. Call this event

Fy :Zk/Q A Ek/g.
The second way is when the event
Ey = Ak'/2 N Bk/g ANC

holds. We have P[E; V Es] = P[Ey]+P[Es] = 1/4+P[C]/4.

An unsuccessful round corresponds to one of the events
A A By, Ap A By or A, A By, AC. The ending configurations
and probabilities listed in the lemma correspond to these three
events.]

Before proceeding further, we make one important remark:
the occurrence of event C' depends upon the (unknown) value
of the input variable . Specifically, the formulas for P[C],
P[C], and E[r¢ | C], E[r¢ | C] depend on whether § is
greater or less than 1/2. Calculations concerning C' are found
in Appendix A. During the final analysis of Theorem 1,
the competitive ratio of our algorithm will be computed by
choosing the § value which gives the maximum ratio. This
dependence on the input variable ¢ is one of the reasons that
we defer evaluation of certain probabilities and expectations
until Section III-C5

Lemma 4: The expected distance traveled in a successful
k/2-th round is

E[Dy 2 | Sk/2]P[Sk/2] = %rk]E[rf] +d (14'4}?[0]) .

Proof. We use the same notation Ej, E5 found in the proof
of Lemma 3. The expected distance traveled in a successful
k/2-th round is given by

E [Dy/a|Sk/2] P [Sk/o]
= E [Dy)2| E1] P[E\] + E [Dy)| E2] P[Eo] &)
where P[E] = 1/4 and P[Es] = P[C] /4.
Next we compute the expected distance traveled for each
of the events E; and E5. The four equiprobable initial con-

figurations in this round are (£ f;_1, 2d £ fr_1). Calculations
similar to equation (2), give

E[Dy/ | E1] = E2fy +d | E1] = 2r"E [r'] + d.

We also have

E[Dy/2 | E2]
= E i (2(d = fr—1) +2(d + fr—1))| = d.

Using these values in equation (5) completes the proof. [

Lemma 5: The expected distance traveled in an unsuccess-
ful k/2-th round is

E [Dy)2|Sk/2] P [Sky2)
k Lo L e C
= r(2+r) <2E[r 1] + EE [7‘ 1|a]P’[C]) .

Proof. In this round, the robots cannot meet under two condi-
tions. First, they do not meet when they move in tandem. In
other words the event

Es = (Ay2 A Bi2) V (Agj2a A Byya)

holds. Secondly, if they move towards each other and €1, e
are not large enough for them to meet. In other words, the
event

FEy = Ak/2/\ Bk/g/\ C

holds. The expected distance traveled in an unsuccessful k/2-
th round is given by

E [Dy/2[Sk2] P [S 2]
= E[Dy)s|Bs] PEs] +E [Dyyo| Ea] P[E4]. (6)

We have P[E5] = 1/2 and P[E4] = P[C]/4. Next we compute
the expected distance traveled for each of the events E3, Fj.
Similar to equation (2), these expected distances are

E[Dyj2lEs] = r*2+7)E[r"],
E[Dyo|Es] = r*@2+7)E[r[C].
Using these values in equation (6) proves the lemma. a

3) Analysis of Stage-3 for even k: We compute the ex-
pected distance traveled by a robot in the transitional (k/2+1)-
th round. Assuming that the robots did not meet in Stage-2,
the robots meet in Stage-3 if and only if

Es = (Agj211 A Brja1) V (Agj241 A Brjag)
holds. Therefore we have P[Sy o1 | Rpjop1] = 1/2 =

P[S} /241 | Rij241]. We continue to use the event notation
from the previous section. We enter Stage-3 directly after event
FEs5 or Fy, and we handle these cases separately.

Lemma 6: Suppose that we enter round k/2+ 1 after event

FE3. We have
E[Dyjo+1 | Skjat1 A Es] = r"E[r] +d
and
E[Dy/o41 | Skj241 A B3] = r¥2(2 4+ 1)E[r].

Furthermore, when ?k /241 occurs, the ending configuration
is either (fi+3,2d + fi+3) or (—frts,2d — frys), each with
probability 1/2.

Proof. These values are calculated analogously to equation (2),
using the equivalence Sy /241 = FE5. For both events S, /5,
S /2+1. there are two initial configurations, and two possible
itineraries. Averaging over the four equiprobable events gives
the lemma. O

When E, has just occurred, the round k/2 + 1 starts at
position (—fxy1,2d 4+ fre1). The proof of the following
lemma is analogous to that of Lemma 6.

Lemma 7: Suppose that we enter round k/2+ 1 after event
E4. We have @[Dk/%,—l | E4] = %]E[Dk/}i-l | Sk/2+1 /\E4] +
%E[Dk/2+1 | Sk/2+1 AN E;d where

]E[Dk/2+1 | Sk/2+1 A\ E4] = ’I"k+2E[T€ | 6] + d
and
E[Dk/2+1 | Ek/Z—i—l N E4] = T’k+2(2 + T’)}E[’r‘6 | 6}

Furthermore, when S}, /2+1 occurs, the ending configuration
is either (fgx+3,2d + fr+3) or (—fx+3,2d — frr3), each with
probability 1/2. O

We now combine all our terms into a single expression.

Lemma 8: The expected distance traveled in round k/2+1
is

E[Dr/211 | Brj241]P[Rr/241]
= E[Dyjoq1 | E3|P[E3] + E[Dy /241 | E4|P[E4]

where

E[Dy /041 | E3|P[Es] = = (d+ "2 (3 +1)E[r])

RNy

and

E[Dg/oq1 | E4|P[Ey4]

= M (s a4 e pe 7).

Proof. The probability of success in round k/2 + 1 is always

1/2, and we know that P[E3] = 1/2 and P[E,] = P[C]/4.
The result follows from Lemmas 6 and 7. U

4) Analysis of Stage-4 for even k: We compute the
expected distance traveled for all rounds i > (k/2 + 2).
The events F5 and Ey still influence the expected values in
these later rounds. In particular, for ¢ > k/2 + 2, we have

[| Ri]P[R]
= E[r‘| R; A E3]P[R; | E3]P[E5]
VE[r¢ | Ri A EsJP[R; | EaP[E4]

E[r|P[R; | E3]|P[E3]

+E[r¢ | CIP[R; | E4]P[Ey]. (7N

Note that if F4 holds, then so does C, which in turn influences
the expected value of r¢. However, the rendezvous behavior
of round i > k/2+ 2 is independent of how we got there: we
always achieve rendezvous with probability 1/2. This behavior
is summarized in the following lemma.

Lemma 9: For i > k/2 + 2, we have

1 i—k/2—1
P[R; | E3] = P[R; | E4] = (2> .
Furthermore,
1 21 €
1) _
E[D; | Ry NEy] = 3 (d+r* (3+7r)E[rc|C]).

Proof. We prove the lemma given Es occurred in the critical
round k/2. The proof for E, is analogous.

The probability that round k/2+ 1 was unsuccessful is 1/2.
Likewise, every round ¢ > k/24 2 is successful half the time,
namely when (A; A B;)V (A; A B;) holds. This proves the first
statement for E'3. Considering the expected distance traveled
in round i, we find that

E[D; | Ri A E3] = E[D; | R; A E3 A Si|P[S;]
+E[D; | R; A E3 A S;|P[S;]
1

(rziE[re | Es] + d) + B (rzi(2 +rE[r | Eg])

(d+7r*(3+r)E[r]).

N —N| -

This concludes the proof for E3. The only difference in the
proofs for Ey is the fact that E[r¢ | E4] = E[r< | C]. O

We now compute the expected distance traveled in Stage-4.
Lemma 10: The expected distance traveled in Stage-4 is

>~ E[D; | Ri|PR;]
i=k/2+2
1 A3 +r) .
= d+ 5 E[r])

Proof. We split our calculation according to R; A E3 and R; A
FE,4. If R; A E5 holds, then by Lemma 9 we have
> E[Di| R; A Es|P[R; | Es|P|E;]
i=k /242

1

4
- X () T E s ()
+ WE[T?))

The calculations for R; A E4 are entirely analogous, and give

> E[Di | R; A EyJP[R; A E4|P[Ey]
i=k/2+2

-,

rF+4(3 4 1)
2 —1r2

Ejr |C]> .
O

5) Computing the competitive ratio of SR: Having deter-
mined the expected distance traveled in all stages, we can now
prove our main result. We show that the optimal expansion
radius is r ~ 1.195 which guarantees an algorithm that is
17.686-distance competitive and 24.843-distance competitive.

Proof of Theorem 1. We sketch the proof for the distance
competitive ratio for even k. Additional calculations are avail-
able in [19]. The total expected distance traveled is obtained
by adding the expressions in Lemmas 2, 4, 5, 8 and 10. This
expression is quite long, so we omit its formulation. Recalling
that d = r*+°, we first replace each occurrence of r* with
dr=%. Then we divide by d to obtain the competitive ratio.

Next we evaluate the probabilities P[C], P[C] and the
expectations E[r¢], E[r¢ | C]P[C] and E[r¢ | C]P[C], as found
in Appendix A. We note that the values involving C' have a
dependence on the value of the input variable §. Specifically,
we must perform two sets of calculations, depending on
whether 0 < 6 < 1/2 or 1/2 < ¢ < 1. For each, we will
choose the § which maximizes the distance competitive ratio.

For 0 < 0 < 1/2, this expression is maximized at § =
1/2. In turn, the choice of r = 1.195 gives the minimum
competitive ratio guarantee of 17.48. Next, the expression for
1/2 < 6 <1 is maximized for 6 = 1. The choice of r ~ 1.195
also minimizes this function. This value gives a competitive
ratio guarantee of 17.686. Therefore, for any input distance d,
our algorithm guarantees a competitive ratio of 17.686.

The time analysis for even k is analogous to the above
calculations. It gives a time competitive ratio of 24.85. A
sketch of this analysis is given in [19]. The time and distance
analysis for odd k is also quite similar to the above calcula-
tions. The details are sketched in [19], where we show that
the odd distance competitive ratio is 17.686 and the odd time
competitive ratio is 23.58.]

Average number of rounds for various r values
with respect to the change in d

5
T

S
T

Average number of rounds

W Each robot selects random Sepsilon$ at the beginning of the search]
RN RN RN NN NN NN NN
% 56 01 2 OOMIBEEIBRON PPN PRSP DO DI OO 22

d

Average competitive ratio for various r values
with respect to the change in d
T g T T

N
x]
T

N
R
T

R
T

4 0n
© 3

Average competitive ratio
>

Fig. 2. The average performance of algorithm SR in 10,000 simulations.
Here, € is randomly chosen only at the beginning of the search. TOP: Average
number of rounds with respect to the change in the initial distance for various
r values. BOTTOM: Competitive ratio for the average distance traveled with
respect to the change in d for various r values.

IV. SIMULATIONS

In this section, we investigate the performance of the
Algorithm SR in simulations. So far we assumed that the
robots start at the same time. Although this is a standard
assumption, it may be violated in practice. Therefore, we
divide the simulations into two groups with respect to the
time the robots start executing the algorithm: the synchronous
case (same starting time) and the asynchronous case (different
starting times). Sections IV-A and IV-B respectively present
the simulation results for the first and the second group.

A. Synchronous Starting Times

In this section, we show that the simulation results of the
synchronous case of SR agree with the optimal choice of r
and the competitive ratio we obtained in Theorem 1. Moreover,
we also show that randomizing € at each round is analogous
to errors proportional to distance. This yields the observation
that our algorithm is robust to navigational errors.

First we investigate the performance of SR as a function of
r and initial distance. The plots in Figure 2 report the results
of simulations for various r values and initial distances, each
averaged over 10,000 trials. The initial distance between the
robots is 2d. We simulate our strategy for integer d values
varied between 5 and 50 step sizes and the robot has a speed
of unit step size. The value of r is started at 1.145 and
incremented by 0.025 up to 1.295.

The top plot shows the change in average number of
rounds for these r values, as a function of initial distance. As

Average distance competitive ratio for various r values
with respect to the change in d
T g T T

A-r=1.145

Average distance competitive ratio

Average distance competitive ratio with respect to the change in r

(averaged over d values btw 5-50
T T T T
-A-CR (randomize ¢ only at the beginning)\
2l —k-CR=17.69
—6-adding noise to no ¢ alg.

22 CR (randomize ¢ at each round)

30 1

28 B

Average distance competitive ratio
0
3

Fig. 3. The performance of our algorithm SR in simulations when each
robot generates a new € value for each round. TOP: Competitive ratio for
the average distance traveled with respect to the change in d for various r
values. BOTTOM: The effect of Gaussian noise on the competitive ratio of
our algorithm. The distance competitive ratio is averaged over various initial
distance values for each r value on the z-axis.

expected, the simulation results show that the average number
of rounds increases as the initial distance increases and as the
value of r decreases. Indeed, the average number of rounds
which is &~ (k/2 4 1) is highest when r = 1.145 and lowest
when r = 1.295.

The bottom plot in Figure 2 shows the average competitive
ratio as a function of initial distance for the same set of r val-
ues. The horizontal dotted line shows the theoretically optimal
distance competitive ratio of 17.696 for the optimal value of
r = 1.195. The black solid line shows the performance of
SR in simulations for r = 1.195. In these simulations, we
observe that » = 1.195 has superior performance for most
initial distance values.

Next, we consider a variant of the SR algorithm in which a
new value of € € (0, 1] is generated in each round. The effect
of this randomness can be interpreted as navigational errors,
for example due to odometry errors. The performance of this
variant shows that our algorithm is robust under such errors.
First, we simulate these errors by selecting € € (0, 1] uniformly
random for each robot at each round. Analysis similar to that
of Theorem 1 shows that this variant has the same expected
competitive ratio. The results of our simulations, found in
Figure 3, agree with this claim. The top plot shows the average
distance competitive ratio for various r values, plotted as a
function of initial distance. The results are comparable to those
in Figure 2.

In the literature, the noise caused by navigational errors
is often modeled as a Gaussian whose standard deviation is

proportional to the distance traveled [20]. In the bottom plot
in Figure 3, we execute SR in the presence of such errors.
In these simulations, we assume that the errors occur only in
the X-axis. We use p = —1.843 and ¢ = 0.372 from Table 1
of [20]. Specifically, rather than taking f; = 7T, we set
fi = r*+n(u, o) where n is the Gaussian noise. These values
are for a robot moving at 0.2 m/sec.

The horizontal dotted line shows the SR’s distance com-
petitive ratio of 17.696 for the optimal value r = 1.195.
The competitive ratio for radius r is the average of the
observed competitive ratio over all simulated d values. In other
words, we ran 10,000 simulations for each integer distances
5 < d < 50, and then averaged their observed competitive
ratios. The black solid line shows the change in the competitive
ratio of SR with respect to the change in r. The red solid
line shows the change in the competitive ratio when Gaussian
noise is added to SR. The simulation results indicate that our
algorithm is robust to navigational errors. Indeed, for most of
the r values appear in the x-axis, Gaussian noise does not
effect the performance our algorithm. This means that adding
the random variable € in f; is nearly identical to running SR
with noise.

B. Asynchronous Starting Times

Our main contribution in this paper is the rendezvous strat-
egy SR and its performance analysis under the assumption
that the robots that start executing their strategies simultane-
ously. This synchronized start requires a global control of the
robots which may not be always possible in practice. In this
section, we study the performance of the algorithm SR when
this assumption is violated. We consider simulations in which
robot-2 starts ¢ time units later than robot-1. Figure 4 shows
the average competitive ratio for distances 5 < d < 1000 and
time delays 0 < ¢ < 1000. These simulation results suggest
that our algorithm is robust under synchronization errors. Very
small time delays have little impact on performance. For larger
initial distance d, the distance competitive ratio stays below
22. Furthermore, very long delays actually improve perfor-
mance. Indeed, we expect this behavior since our symmetric
rendezvous problem becomes closer to the asymmetric case,
where one robot “waits for mommy.” In other words, for very
large t (compared to d), we have a lost cow problem. We see
a clear downward trend on the competitive ratio as ¢ increases.
Indeed, for smaller d values, the competitive ratio stabilizes at
a value just above 10.

Continuing along this line, if we anticipate major synchro-
nization errors, then our algorithm should be adapted to better
fit the scenario. The idle times of SR are designed precisely
to keep our robot motions synchronized. If a near-synchronous
start time is not guaranteed, these idles times are ineffective.
Therefore, we considered a second set of simulations in which
we eliminate the idle times from the SR algorithm. We call
the resulting algorithm ASR, for asynchronous symmetric
rendezvous.

We studied the performance of ASR in two phases. First,
we empirically determined a good choice of r for the asyn-
chronous case. Next, we studied the performance of ASR as a

Average distance competitive ratio for various d values with respect to the change in t

(SR Algorithm with r = 1.195
T T

Average distance competitive ratio

Fig. 4. The average distance competitive performance in simulations of the
Algorithm SR for r = 1.195 with respect to the change in d and t.

function of the initial distance and time delay for this particular
value of r. Specifically, in the first phase of our simulations,
we found the average distance competitive ratios for robot-1
for various r values with respect to changes in distance d and
time delay ¢. Each combination of (r,d,t) was averaged over
5,000 trials. The simulation results (figure omitted) indicated
that ASTR gives the best performance when 1.35 < r < 1.85.

In the second phase, we chose the value r = 1.55 for
more intensive investigation. We ran additional simulations for
combinations of (d, t) for this radius. The results are presented
in Figure 5, which shows the average competitive ratio for
distances 5 < d < 1000 and time delays 0 < ¢ < 1000. These
ratios are bounded above by 22. In fact, with the exception of
the combination d = 500, ¢t = 250, all are less than 20.

The results suggest that the worst-case time delay is near
t = 0. Indeed, a long delay brings the robot behavior closer to
an asymmetric rendezvous search problem (as noted above in
the SR simulations). Again, we see a clear downward trend
on the competitive ratio as ¢ increases. For smaller d values,
the competitive ratio stabilizes near 6, which is roughly equal
the competitive ratio for the SmartCow algorithm value for
expansion radius r = 1.55.

In summary, our simulations of the SR and ASR algo-
rithms show robust performance with respect to time delays.
Comparing the simulation plots for SR and ASR, we see that
the SR algorithm performs better for very small time delays
(near-synchronous start), while the ASR algorithm performs
better for very long time delays.

V. EXTENSIONS

In this section, we present the two extensions of our algo-
rithm in practical scenarios. First, we consider line segments
and half lines (see Figure 6) which can be encountered in large
indoor environments. In such environments, robot movements
are restricted by the boundary points. We modify our algorithm
as follows to utilize these boundaries. If during the execution
of SR the robot hits a boundary, it moves in the opposite
direction until it meets with the other robot. Clearly, once a
robot encounters the boundary, it knows that the other robot
lies in the opposite direction.

Next, we consider simple closed path environments, such as
the circular corridor as shown in Figure 7. In the linear case,

Average distance competitive ratio for various d values with respect to the change in t
(ASR Algorithm with r = 1.55)

i
£-d-1s
FRs
R =i
5 R
NAX i

AL

»Aﬁx.b;-‘i%,&@ v

1.55)

(r

Average distance competitive ratio

1 1 1 1 1 1 1 — A S
IR EEEEEEEEE

t

&

Fig. 5. The average distance competitive performance in simulations of the
Algorithm ASR for r = 1.55 with respect to the change in d and ¢.

Fig. 6. The First Extension of SR: The algorithm SR can be extended
for bounded environments such as line segments and half lines (Lemma 11).

there is only one way for robots to meet: the left robot must
move right and the right robot must move left. In a circular
environment, eventually there are two ways for the robots to
meet: as long as they are not moving in tandem, they are
getting closer from one side or the other. In the circular path
environment, we simply follow the same SR algorithm.

It is not difficult to see that the above modifications do not
increase the competitive ration of SR. This is summarized in
the following lemmas whose proofs are omitted.

Lemma 11: The competitive ratio of the line segment ex-
tension does not exceed the competitive ratio of SR.

Lemma 12: The competitive ratio of SR is an upper bound
for the circular path extension.

VI. EXPERIMENTS

In this section, we present experimental results obtained
from a real deployment of two robots. These experiments
validate the symmetric rendezvous strategy and its extensions
(line segment and circular path) and show its practicability in
real world environments.

Fig. 7. Second Extension of SR: The algorithm SR can also be extended
for closed path like environments (Lemma 12).

10

Fig. 8. LEFT: Experiment setup for the first and second groups showing
two iRobot Create robots equipped with Asus EEE PC laptop on it placed
on a straight corridor. RIGHT: Experiment setup for the third group showing
two iRobot Create robots equipped with Asus EEE PC laptop on it placed on
a rectangular shaped corridor in an indoor environment.

A. Experimental Setup

We used iRobot Create (see Figure 8) robots as our robotic
platform for the experiments. iRobot Create has external
sensors such as wheel drop sensors, bumper sensors, cliff
sensors and Omnidirectional IR Receiver. In our experiments,
we only use bumper sensors for the robot to go to opposite
direction when it hits a boundary wall.

We conducted three groups of experiments in indoor envi-
ronments. We varied the initial distance between the robots
in each experiment group. The experiment groups are straight
line experiments (SLE), straight line experiments with bound-
ary (SLEB) and closed curve experiments (CCE). In SLE and
SLEB, two robots are placed on a straight corridor. In CCE,
two robots are placed on a rectangular shaped corridor. The
velocity of each robot was set to 0.2 m/s and 7 is set to 1.195
meters. Robots synchronously execute the SR Algorithm,
or its appropriate variant. If they bump into each other,
the experiment ends and we conclude that the rendezvous
occurred. We ignore errors that result in robots moving slightly
off the line. In all of the experiments, the robots were able to
meet successfully. The vertical dashed lines in the experiment
figures show the starting points of a new round.

B. Experimental Results

In Figures 9, 10, 11 and 12, we present the robots’ trajecto-
ries. The experiments in Figures 9, 10 and 11 are performed
on the straight corridor and aim to show the practicability
of SR and its first extension. The z-axis in these figures
represents the time in seconds and the y-axis represents the
z-coordinate of the robots on the line in meters. In Figure 12,
we illustrate the results of the experiments performed in a
rectangular shaped corridor to show the practicability of the
second extension of SR. In this figure, the z-axis and y-axis
represent the z-coordinate and y-coordinate of the robots while
z-axis represents the time in seconds. When the trajectories
intersect, the robots are at the same position on the line and
the rendezvous occurs.

Figure 9 represents the experiments in SLE where the
robots execute the symmetric rendezvous strategy presented

in Algorithm 1. The robots are initially placed at a distance
of three and seven meters. In the top plot of this figure, the
robots are placed 2d = 3 meters away from each other. Solving
d = r**9 yields k = 2 and § = 0.2239. The rendezvous
occurred in two rounds which took 10.3 seconds. The outcome
of randomly selected ¢ values by each robot is ¢; = 0.22
and €5 = 0.33. In the first round Robot-1 tosses heads and
moves r2*0T€1 = 1.06 meters to right. Recall that to move syn-
chronously with the other robot, the robot waits long enough
to allow the robot to complete its current motion. Therefore
in this experiment, the robot waits for r2*9t1 — 1.06 = 0.14
seconds at the end of the first phase. In the second phase, it
moves r2*0te 1 p2#0+1+a — 1 06 4 1.27 = 2.33 to left and
waits for r2*0+1 4 p2:0+1+1 _ 933 — (.31 seconds at the
end of the second phase. Meanwhile, Ro also tosses heads
and moves r2*0t¢2 = 1.04 meters to right and then waits for
r2*0+1_1.04 = 0.16 at the end of the first phase. In the second
phase, it moves r2*0Fe1 4 p2¥0+1ter — 1 04 +1.24 = 2.28 to
left and waits for 2*0F1 4 p2¥0+1+1 _ 9 98 — (.36 seconds
at the end of the second phase.

Figures 10 and 11 represent the experiments in SLEB and
SLEB-2b. For both SLEB and SLEB-2b, we place the robots
at an initial distance of five and seven meters. In contrast to
SLE, in SLEB we consider the case where there is a boundary
wall close to either one robot or both robots. As in SLE, the
robots execute the bounded segment variant of Algorithm 1.
To detect the boundary wall, the robot uses its bumper sensors
which are placed at the front side of the robot. Because the
sensor must always face the direction of movement, we make
the robot turn to face the direction it moves. In SLEB, there is
a boundary wall in close vicinity of either Robot-1 or Robot-
2. In the top plot of Figure 10, the initial distance between
the robots is 5 meters and the boundary wall is located two
meters away from Robot-1. In the second plot of Figure 10,
the initial distance between the robots is seven meters and
the boundary wall is located two meters away from Robot-
2. The plots in Figure 11 show the results of the experiments
when there are boundary walls in close vicinity of both Robot-
1 and Robot-2 (approximately two meters away). In the last
plot of Figure 11, Robot-2 tosses tail in the second round and
it starts moving to the left. When its displacement from its
initial location becomes two meters in the first phase, it hits
the boundary wall and starts moving to the right. It keeps
moving to the right until it hits Robot-1 at position 6.766. It
took 18.2 seconds for the robots to meet.

Figure 12 illustrates CCE. In contrast to the experiments
performed on the line, in CCE, both x and y coordinates of the
robots change. The robots are placed in a rectangular shaped
corridor. The length of the rectangle is ~ 27.5 and its width
is = 18.5 meters. Bottom plot in Figure 8 shows an example
to the setup of these experiments. In the top plot of Figure 12,
both Robot-1 and Robot-2 start five meters away from the
corner. In the bottom plot, Robot-1 starts three meters away
from the corner while Robot-2 starts seven meters away from
the corner. Each robot executes Algorithm 1, aware that when
it reaches the corner of the rectangle, it must turn into to the
other corridor and continue its movement. In both plots, the
robots met inside one of the corridors.

SLE Experiment-1: d = 3 meters
T

T [—nRobot-1
—Robot-2

position (meters)

6
total time (sec)

SLE Experiment-3: d = 7 meters

T T T T T T T T T
! ! ! ' ' ' ' ——Robot-1
o i i i ! —Robot-2|

20F [| | | |

position (meters)

L L A L
100 120 140 160 180 200
total time (sec)

Fig. 9. Straight line experiments. Experiments are performed on a straight
corridor. The robots execute Algorithm 1. Rendezvous occurs when the
trajectories of the robots intersect. The initial distance between the robots
in the top plot is three meters and seven meters in the bottom plot of this
figure.

SLEB Experiment-1: d = 5 meters
T T

——Robot-1
——Robot-2|

X-position (meters)
»

-2f

10 15
total time (sec)

SLEB Experiment-2: d = 7 meters
T T T T

——Robot-1
——Robot-2|

X-position (meters)
-

N L L
B 10 12 14 16 18
total time (sec)

Fig. 10. Straight line experiments with boundary. Experiments are performed
on a straight corridor. SLEB: There is a boundary wall close to either Robot-1
or Robot-2.

SLEB-2b Experiment-1: d = 5 meters
T T T T

X-position (meters)

8
total time (sec)

SLEB-2b Experiment-2: d = 7 meters

x-position (meters)

10 12
total time (sec)

Fig. 11. Straight line experiments with boundary. Experiments are performed
on a straight corridor. SLEB-2b: There is a boundary wall close to both
Robot-1 and Robot-2.

Experiment-1: d = 5 meters

~— Robot-1
—— Robot-2|

total time (sec)

y-position (meters) 2 6 x-position (meters)

Experiment-1: dx = 3 meters, dy = 7 meters

~—Robot-1
——Robot-2

total time (sec)

x-position (meters)

v-nosition (meters)

Fig. 12. Closed curve experiments. Experiments are performed on a
rectangular shaped corridor. TOP: Both Robot-1 and Robot-2 is five meters
away from the corner. BOTTOM: Robot-1 is three meters away from the
corner while Robot-2 is seven meters away from the corner.

VII. CONCLUSION

In our study of the symmetric rendezvous problem on the
line, we generalized the Spiral LostCow algorithm for two
symmetric robots. We identified the theoretically optimal value
r = 1.195. With this expansion radius, our symmetric strategy
has a competitive ratio of 17.686 for total distance traveled and
a competitive ratio of 24.843 for total time. We showed that
our algorithm can be adapted for bounded linear environments
and simple closed environments with the same performance
guarantees. In simulations, we compared SR’s performance
with various r values and various initial distances. We also
showed that the algorithm is robust to navigational errors. Our
results were consistent with the theoretical analysis. Finally,
we report the results from an experiment in which two robots
try to meet in a corridor.

In future work, we will study symmetric rendezvous on the
line for three or more robots. A further extension is to consider
the symmetric rendezvous problem in the plane, both with and
without obstacles.

VIII. ACKNOWLEDGMENTS

This work is supported in part by National Science Foun-
dation Awards 0916209, 0917676 and 1111638, and a grant
from The Scientific and Technological Research Council of
Turkey. The authors would like to thank the members of
Robotic Sensor Networks Lab at the University of Minnesota
for numerous useful discussions.

REFERENCES

[1] S. Alpern, “The rendezvous search problem,” STAM Journal on Control
and Optimization, vol. 33, p. 673, 1995.

[2] S. Alpern and S. Gal, The Theory of Search Games and Rendezvous.
Springer, 2003.

[3] E. Anderson and S. Essegaier, “Rendezvous search on the line with
indistinguishable players,” SIAM Journal on Control and Optimization,
vol. 33, p. 1637, 1995.

[4] V. Baston, “Note: Two rendezvous search problems on the line,” Naval
Research Logistics, vol. 46, no. 3, pp. 335-340, 1999.

[5] P. Uthaisombut, “Symmetric rendezvous search on the line using move
patterns with different lengths,” 2006.

[6] Q. Han, D. Du, J. Vera, and L. Zuluaga, “Improved bounds for
the symmetric rendezvous value on the line,” in Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete algorithms, p. 78,
Society for Industrial and Applied Mathematics, 2007.

[71 G. Stachowiak, “Asynchronous Deterministic Rendezvous on the Line,”
SOFSEM 2009: Theory and Practice of Computer Science, pp. 497-508,
2009.

[8]1 S. Alpern and S. Gal, “Rendezvous search on the line with distin-
guishable players,” SIAM Journal on Control and Optimization, vol. 33,
p.- 1270, 1995.

[9] V. Baston and S. Gal, “Rendezvous on the line when the players’ initial
distance is given by an unknown probability distribution,” SIAM Journal
on Control and Optimization, vol. 36, p. 1880, 1998.

[10] S. Gal, “Rendezvous search on the line,” Operations Research, pp. 974—
976, 1999.

[11] S. Alpern and A. Beck, “Asymmetric rendezvous on the line is a double
linear search problem,” Mathematics of Operations Research, vol. 24,
no. 3, pp. 604-618, 1999.

[12] S. Alpern and A. Beck, “Pure strategy asymmetric rendezvous on the
line with an unknown initial distance,” Operations Research, vol. 48,
no. 3, p. 498, 2000.

[13] P. Rawicz, P. Kalata, and K. Murphy, “On the stability of mobile
robot rendezvous,” in Intelligent Control (ISIC), 1998. Held jointly
with IEEE International Symposium on Computational Intelligence in
Robotics and Automation (CIRA), Intelligent Systems and Semiotics
(ISAS), Proceedings, pp. 570-575, IEEE, 1998.

[14]

[15]
[16]
[17]
(18]

[19]

[20]

F. Agah, M. Mehrandezh, R. Fenton, and B. Benhabib, “Rendezvous-
guidance based robotic interception,” in Intelligent Robots and Systems,
2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International Confer-
ence on, vol. 3, pp. 2998-3003, IEEE, 2003.

A. Beck and D. J. Newman, “Yet more on the linear search problem,”
Israel J. Math., vol. 8, pp. 419-229, 1970.

R. Baeza-Yates, J. Culberson, and G. Rawlins, “Searching in the plane,”
Information and Computation, vol. 106, pp. 234-234, 1993.

S. Gal, Search Games. Academic Press, 1980.

M. Kao, Y. Ma, M. Sipser, and Y. Yin, “Optimal construction of hybrid
algorithms,” Proceedings of the 5th ACM-SIAM Symposium on Discrete
Algorithms (SODA ’94), pp. 372-381, 1994.

A. Beveridge, D. Ozsoyeller, and V. Isler, “Symmetric rendezvous on the
line with an unknown initial distance,” Tech. Rep. 11-008, University
of Minnesota, 2011. http://www.cs.umn.edu/research/

technical_reports.php?page=report&report_id=11-008.

I. Rekleitis, “A particle filter tutorial for mobile robot localization,” Tech.
Rep. CIM-04-02, McGill University, 2004.

Deniz Ozsoyeller received her B.S. degree in Com-
puter Engineering from Izmir University of Eco-
nomics, Turkey, in 2006, ranking first in her de-
partment and MSc degree from Ege University,
International Computer Institute, Turkey, in 2008.
She is currently a teaching assistant in the Computer
Engineering Department at Izmir University, Turkey
and continues her Ph.D. studies at Ege University,
International Computer Institute, Turkey. She re-
ceived the International Research Fellowship from
the Scientific and Technical Research Council of

Turkey (TUBITAK). From 2010 to 2012, she was a visiting scholar in the
Computer Engineering Department at University of Minnesota under the
supervision of Prof. Isler. Her research interests are in robotics and wireless
sensor networks.

Andrew Beveridge is an Associate Professor in the
Department of Mathematics, Statistics and Computer
Science at Macalester College. He previously held a
post-doctoral position in the Algorithms, Combina-
torics and Optimization group at Carnegie Mellon
University. He obtained his MS (1994) and PhD
(1997) degrees in Mathematics from Yale Univer-
sity. He obtained his BA (1991) in Mathematics
from Williams College. His research interests are
primarily in theoretical robotics and probabilistic
combinatorics.

Volkan Isler is an Associate Professor in the Com-
puter Science Department at the University of Min-

nesota. He is currently co-chairing IEEE Society of
Robotics and Automation’s Technical Committee on
= Networked Robots. He is also serving as an Asso-
o ciate Editor for IEEE Transactions on Robotics and
v IEEE Transactions on Automation Science and En-

gineering. In 2008, he received the National Science
Foundation’s Young Investigator Award (CAREER).
His research interests are primarily in robotics, sen-
sor networks and geometric algorithms.

APPENDIX

In this appendix, we perform some basic calculations re-
quired for the analysis in Section III-C. We continue to use
the terminology found in that section.

A. Relevant Expectations and Probabilities

Using the substitution € = log,. v, we have

1 T
/ réde = / rlogruidu
0 1 ulogr
- /115;7" - :og:' ®)
Recall that C is the event that €5 > 25 — €;. We calculate
P[C], P[C], E[r¢ | C]P[C] and E[r¢ | C]P[C]. For simplicity,
we rename €1, €2 as ., y, so that event C becomes y > 20 —x
where z,y € [0, 1].
Finding these values requires integrating in the unit square.
Crucially, we note that the limits of integration depend upon
J. Namely, we consider the two cases 0 < 6 < 1/2and 1/2 <

0 <1 separately since they require distinct calculations.
1) Case 0 < § < 1/2: In this case,

- 28 p26—x
C’] = / / dyox = 26>
o Jo

P[C] =1 — 262

E[r]

and therefore

We also have

o 20 20—z
E [+ |C]P[C] = /0/0 r¥0yor

r2 _ 9§ log(r) — 1

= 9
log®(r) ©
and we can evaluate
E[r'|C|P[C] = E[r] — E [rq@] P[C].
using equations (8) and (9).
2) Case 1/2 < 6 < 1: In this case,
P[C|F]= 3y3:17 =2(1—9)?
25—-1J26—x
and therefore
P[C] =1-2(1-6)>
We also have
E[r|C]P / / r*oydx
25 1 25 x
r2 25
_ log(r) —r? +r (10)

rlog? (r)
and we can evaluate

E [r|C] P[C] =E[r*'] - E [|C] P[C]

using equations (8) and (10).

