
Copyright c©1998 John Wiley & Sons.

This is a preprint of an article published in J. Graph Theory 29 (1998) 57-62.

For the definitive version of this article, visit http://www.interscience.wiley.com/.

1



Random walks and the regeneration time

Andrew Beveridge and László Lovász
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Abstract

Consider a graph G and a random walk on it. We want to stop the random walk
at certain times (using an optimal stopping rule) to obtain independent samples from a
given distribution ρ on the nodes. For an undirected graph, the expected time between
consecutive samples is maximized by a distribution equally divided between two nodes,
and so the worst expected time is 1/4 of the maximum commute time between two nodes.
In the directed case, the expected time for this distribution is within a factor of 2 of the
maximum.

1 Introduction

Consider a random walk on the graph G = (V, E) starting at node i. We can use an optimal

stopping rule (see section 2 for the exact definition) to halt a random walk starting at i so

that the distribution of the final node is a given distribution ρ. Denote the expected length of

this walk by H(i, ρ).

The quantity H(i, π) measures the mixing speed of the walk, starting at i. A number of

other mixing measures have been introduced and studied (see Aldous [1], Lovász and Winkler

[5], [6] and Aldous, Lovász and Winkler [2]). One of these is the reset time Treset =
∑

i πiH(i, π)

(here π is the stationary distribution). One of the results in [2] (formulated here for undirected

graphs only) states that the reset time is within an absolute constant factor of other mixing

measures, like the number of steps after which the distribution of the current node is closer

than (say) one percent to the stationary distribution, starting from the worst point.

We consider the more general regeneration time Tregen(ρ) =
∑

i ρiH(i, ρ). One can view

Tregen(ρ) as follows. We start a random walk from a random node drawn from distribution

ρ, and want to stop it (by an optimal stopping rule) so that an independent sample from the

same distribution ρ is obtained. We define Tregen = maxρ Tregen(ρ), where the maximum is

taken over all distributions on G.

It turns out that the regeneration time is in general much larger than the reset time, and
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in fact it is closely related to the commute time. The commute time between two nodes i and

j is H(i, j) + H(j, i), and the commute time Tcomm of the graph is defined as the maximum

commute time between any pair of nodes of G.

Our main result is the following.

Theorem 1 For an undirected graph, the regeneration time is maximized by a distribution

equally divided between two nodes, and hence

Tregen =
1
4
Tcomm.

Turning to the directed case, in general we can determine the regeneration time within a

factor of 2.

Theorem 2 For a directed graph G,

1
4
Tcomm ≤ Tregen ≤ n − 1

2n
Tcomm,

and these bounds are tight.

Let us note that the minimum regeneration time of distributions is trivial: the regeneration

time of a distribution concentrated on a single node is 0.

Finally, we have to point out that all of our results hold without any essential change for

finite Markov chains (where undirected graphs correspond to time-reversible chains).

2 Preliminaries

The support of a distribution ρ on V , denoted Sρ, is the set of nodes i such that ρi > 0.

Given a directed, connected graph G = (V, E) with transition matrix M = (pij) a random

walk on G is a sequence of nodes (w0, w1, . . . , wt, . . .) such that the probability that wt+1=j is

pwtj . For an undirected graph G, a random walk has transition probabilities pij = 1/d(i) if

ij ∈ E and 0 otherwise where d(i) is the degree of i. For irreducible, aperiodic G, as time t

tends to infinity the distribution of the tth state tends to the so called stationary distribution

π; for a random walk on an undirected graph G, πi = d(i)
2|E| . The hitting time H(i, j) is the

expected length of a random walk from i to j. The cycle reversing identity of [3] states that

for an undirected graph,

H(i, j) + H(j, k) + H(k, i) = H(i, k) + H(k, j) + H(j, i) (1)
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for any three nodes i, j and k. The analogous result holds for more than three nodes with an

identical proof.

Let V ∗ be the space of finite walks on V , i.e. the set of finite strings w = (w0, w1, w2, . . . , wt),

wi ∈ V and wiwi+1 ∈ E. For a given initial distribution σ the probability of w being the walk

after t steps is

Pr(w) = σw0

t−1∏

i=0
pwi,wi+1 .

A stopping rule Γ is a map from V ∗ to [0, 1] such that Γ(w) is the probability of continuing

given that w is the walk so far observed. We assume that with probability 1 the rule stops the

walk in a finite number of steps.

Given another distribution τ on V , we define the access time H(σ, τ) as the minimum

expected length of a stopping rule Γ that produces τ when started at σ. We say Γ is optimal

if it achieves this minimum. Optimal stopping rules exist for any pair σ, τ of distributions

(see e.g. [6]). When σ and τ are concentrated on single states i and j respectively (we

write σ = i, τ = j), then the access time H(i, j) is the (expected) hitting time from i to

j. In this instance, the only optimal stopping rule is “walk until you hit j.” Whenever our

target is concentrated on a node, the analogous rule is optimal for any starting distribution:

H(σ, j) =
∑

i σiH(i, j). However, equality does not usually hold if our target is not a singleton.

Given a stopping rule Γ from σ to τ , for each i ∈ V we define its exit frequency xi(Γ) to

be the expected number of times the walk leaves state i before halting. Exit frequencies are

fundamental to virtually all access time results. A key observation due to Pitman [7] is that

exit frequencies satisfy
∑

j

pjixj(Γ) − xi(Γ) = τi − σi. (2)

It follows from this “conservation equation” that the exit frequencies for two rules from σ to

τ differ by Kπi where K is the difference between the expected lengths of these rules. Hence

the distributions σ and τ uniquely determine the exit frequencies for an optimal stopping rule

between them and we denote these optimal exit frequencies by xi(σ, τ). Moreover, Lovász and

Winkler [6] prove that a stopping rule Γ is optimal if and only if there exists a halting state k

such that xk(Γ) = 0.

Any three distributions ρ, σ and τ satisfy the “triangle inequality”

H(ρ, τ) ≤ H(ρ, σ) + H(σ, τ) (3)

with equality holding if and only if there is a k that is a halting state from ρ to σ and
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simultaneously from σ to τ . In particular, H(σ, j) ≤ H(σ, τ) + H(τ, j) and equality holds if

and only if j is a halting state for the σ, τ -walk. Hence

H(σ, τ) = max
j

(H(σ, j) − H(τ, j)).

3 Proofs

Consider a directed graph G and a distribution ρ concentrated on two nodes i, j. Then

∑

k

ρkH(k, ρ) = ρiρj(H(i, j) + H(j, i)) = ρi(1 − ρi)(H(i, j) + H(j, i)).

Clearly this quantity is maximized when ρ is equally divided between the two nodes which

maximize the commute time, showing that Tregen ≥ 1
4Tcomm. This proves the lower bound in

theorem 2 (and of course also in theorem 1).

To complete the proof of theorem 1 we need some lemmas.

Lemma 1 For an undirected graph G and a distribution ρ on G, assume there is a sequence

of nodes (i1, i2, . . . , ir) such that for all k, ik+1 is a halting state for the (ik, ρ)-walk. Then

ik−1 is also halting for the (ik, ρ)-walk (here i0 = ir and ir+1 = i1).

Proof. If i∗ is a halting state for the (i, ρ)-walk, then H(i, i∗) − H(ρ, i∗) ≥ H(i, j) − H(ρ, j)

for all j with equality holding if and only if j is also a ρ-halting state for i. Therefore

r∑

k=1
(H(ik, ik+1) − H(ρ, ik+1)) ≥

r∑

k=1
(H(ik, ik−1) − H(ρ, ik−1)).

Adding
∑

k H(ρ, ik) to both sides yields
∑

k H(ik, ik+1) ≥
∑

k H(ik, ik−1). This is satisfied

with equality by the cycle reversing identity (1) and the lemma follows. !

Corollary 1 For every distribution ρ on an undirected graph G, there exist nodes i, j such

that i is ρ-halting for j and vice versa. If ρ is not a singleton, such indices i and j exist in

the support of ρ.

Proof. If the distribution is concentrated on a single node ρ = j then every state is halting

from j and vice versa. For a non-singleton ρ, consider the sequence i1, i2, . . . , ir where ik+1

is ρ-halting for ik and ρik+1 > 0. Since G is finite, eventually a node must repeat. We may

assume ir+1 = i1 is the first repeat of a node in this sequence. Since ρ is not a singleton, r ≥ 2.
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Hence {i1, i2, . . . , ir} satisfies the conditions of lemma 1 so ik and ik+1 are mutually ρ-halting

for every k. !

Corollary 1 generalizes the observation of Lovász and Winkler [5] that for an undirected

graph there are two nodes which are mutually π-halting (in fact, each of these nodes achieves

maxi H(i, π)).

Let ρ be any distribution on V . For T = {s1, s2, . . . , sr} ⊂ Sρ, let σj denote the distribution

achieved by walking from sj until you hit a node in Sρ\T . Let ρ′ denote the distribution with

ρ′
i = ρi +

∑
j∈T ρsjσ

j
i for i ∈ Sρ \ T and zero elsewhere. An optimal stopping rule from ρ to ρ′

is given by “walk until you hit a node in Sρ \ T .” We refer to this process as dispersing the

set T .

Lemma 2 Given a (directed or undirected) graph G and a distribution ρ, assume that T =

{s1, s2, . . . , sr} is a subset of Sρ such that every node in Sρ \ T has a ρ-halting state in Sρ \ T .

If ρ′ is the distribution achieved by dispersing T then
∑

k ρkH(k, ρ) ≤
∑

k ρ′
kH(k, ρ′).

Proof. Using the notation above, we have ρ′
i = ρi +

∑
j∈T ρsjσ

j
i for i ∈ Sρ \ T and zero

elsewhere. For i ∈ Sρ \ T let i∗ ∈ Sρ \ T be a ρ-halting state. Then xi∗(i, ρ) + xi∗(ρ, ρ′) = 0 so

that H(i, ρ′) = H(i, ρ) + H(ρ, ρ′). Therefore

∑

k

ρ′
kH(k, ρ′) =

∑

k

ρ′
k(H(k, ρ) + H(ρ, ρ′)) =

∑

k

ρkH(k, ρ) +
∑

k

(ρ′
k − ρk)H(k, ρ) + H(ρ, ρ′)

=
∑

k

ρkH(k, ρ) +
∑

j

ρsj

(

H(s, σj) +
∑

k

σj
kH(k, ρ) − H(sj , ρ)

)

≥
∑

k

ρkH(k, ρ) +
∑

j

ρsj (H(sj , σ
j) + H(σj , ρ) − H(sj , ρ)) ≥

∑

k

ρkH(k, ρ)

where the final inequality follows from the triangle inequality (3). !

Proof of Theorem 1. It is enough to show that for an undirected graph G the regeneration

time is achieved by a distribution supported by two nodes.

If the support set Sρ contains more than two nodes, then by Corollary 1 there exits a pair

of nodes i, j ∈ Sρ such that i is ρ-halting for j and vice versa. Let T = Sρ \ {i, j} and disperse

T to get a distribution ρ′ concentrated on i and j. By lemma 2,
∑

k ρkH(i, ρ) ≤
∑

k ρ′
kH(k, ρ′).

!

Proof of Theorem 2. We have proved the lower bound for any graph G already. (Theorem
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1 shows that this lower bound is tight.) The upper bound follows from the naive rule to ρ:
∑

i

ρiH(i, ρ) ≤
∑

i,j

ρiρjH(i, j) =
∑

i<j

ρiρj(H(i, j) + H(j, i)) ≤
∑

i<j

ρiρjTcomm.

The coefficient
∑

i<j ρiρj ≤ (n − 1)/2n with equality if and only if ρi = 1/n for all i.

The following example shows that the upper bound is best possible as well. Consider the

directed cycle on n nodes. The stationary distribution π is the uniform distribution. For every

pair of nodes i, j, H(i, j) + H(j, i) = n and the naive walk from i to π is optimal for all i.

Hence taking ρ = π gives equality at each step in the proof of the upper bound, showing that

the regeneration time of the directed cycle is Tcomm(n − 1)/2n = (n − 1)/2. !

If G is a directed cycle with loops, then an identical argument shows that Tregen of G

achieves the upper bound of theorem 2. The following lemma shows that the converse holds as

well: the family of directed cycles (with or without loops) is the unique set of graphs achieving

Tregen = n−1
2n Tcomm.

Lemma 3 Let G be a graph and ρ > 0, a distribution on V . Assume that the naive rule is

optimal from each node to ρ. Then G is a directed cycle with loops.

Proof. Assume that there exists a node i with outdegree at least 2. By assumption the

naive rule from i to ρ is optimal, hence it has a halting state z. Let P be a shortest path from

i to z. Clearly i has an outneighbor j that is not on P . Now the naive rule selects j with

positive probability, and the random walk traverses P with positive probability, and in this

case it does not halt at z, a contradiction. !
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