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Abstract

Consider the set SG(Qk) of all graphs whose vertices are labeled with non-identity elements
of the group Qk = Zk

2 so that there is an edge between vertices with labels a and b if and only
if the vertex labeled a + b is also in the graph. Note that edges always appear in triangles,
since a + b = c, b + c = a and a + c = b are equivalent statements for Qk. We define the
random cubic sum graph SG(Qk, p) to be the probability space over SG(Qk) whose vertex sets
are determined by Pr[x ∈ V ] = p with these events mutually independent. As p increases from
0 to 1, the expected structure of SG(Qk, p) undergoes radical changes. We obtain thresholds
for some graph properties of SG(Qk, p) as k → ∞. As with the classical random graph, the
threshold for connectivity coincides with the disappearance of the last isolated vertex.
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1 Introduction

The study of random graphs began with the landmark papers of Erdős-Rényi [10, 11]. They in-

troduced the (uniform) random graph G(n, p), which is the probability space over every graph G

on the vertex set [n] where Pr[{i, j} ∈ G] = p, with these events mutually independent. In recent

years, there has been much interest in alternative random graph models, particularly those inspired

by so-called real world networks such as social networks, the world wide web and wireless networks.

This has lead to the development of random graph models with dependencies between the appear-

ance of edges. Some models achieve a prescribed (exact or expected) degree sequence, such as the

configuration model [17] and the preferential attachment model [4, 7, 8]. Other models reflect an

underlying geometric structure, such as random geometric graphs [18]. In this paper, we study a

random graph structure that obeys an underlying algebraic structure.

Introduced by Frank Harary [14], a sum graph is a graph G with a labeling ` : V (G)→ Z+ such

that (xi, xj) ∈ E(G) if and only if there exists xk ∈ V (G) such that `(xi) + `(xj) = `(xk). Sum
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graphs have been well studied. A typical result identifies the minimum number of isolated vertices

that must be added to a graph so that the resulting structure has a sum graph labeling [5, 9, 13, 16].

Sum graphs have potential applications for data compression: specifically for compressed storage of

graphs. They can also be used for secure communication of information [19]. See [12] for a summary

of known results on sum graphs.

Many generalizations of sum graphs have also been studied. A graph is a mod sum graph [6] if

the labels are drawn from Zm. Another generalization to f -graphs [2] replaces the sum xi+xj with

an arbitrary symmetric polynomial f(xi, xj). Consider a further generalization of mod sum graphs.

Let H be any group with identity element e and let H∗ = H\{e} denote all the non-identity elements

of H. An H-sum graph is a directed graph with a labeling ` : V (G)→ H∗ such that (xi, xj) ∈ E(G)

if and only if there exists xk ∈ V (G) such that `(xi) + `(xj) = `(xk) for some k. We exclude e as a

potential label since this vertex would (inconveniently) be adjacent to all other vertices. An H-sum

graph is undirected if and only if H is abelian. We denote the set of all H-sum graphs by SG(H).

Abusing notation slightly, we will identify the elements of H∗ with the set of potential vertices so

that V (G) ⊂ H∗. When clarification is needed, we will refer to x ∈ H∗ as “the element x” and

x ∈ V (G) as “the vertex x.”

We define the random H-sum graph SG(H, p) to be the probability space over the set of H-sum

graphs whose vertex sets V ⊂ H∗ are determined by Pr[x ∈ V ] = p with these events mutually

independent. For convenience, we define n := |H∗| = |H| − 1. For G ∈ SG(H) with v(G) = r,

the probability of obtaining G via this process is pr(1 − p)n−r. Note that the labeled vertices are

independent but the induced edges are not.

A second model for a random H-sum graph is to specify the desired number of vertices r ≤ |H∗|
and then choose a random r-subset of H∗. The resulting probability space is denoted by SG(H, r).

These two models are quite compatible. Indeed, the number of vertices in SG(H, p) is governed by

the binomial distribution Bin(n, p). The following Chernoff bounds (cf. [15], p. 26) will be useful

here (and in the sequel). If X ∈ Bin(n, p) and E[X] = µ = np then with φ(x) = (1+x) log(1+x)−x,

x ≥ −1,

Pr[X ≥ (1 + δ)µ] ≤ exp (−µφ (δ)) , t ≥ 0; (1)

Pr[X ≤ (1− δ)µ] ≤ exp (−µφ (−δ)) , t ≥ 0. (2)

Let the acronym whp (with high probability) mean “with probability 1−o(1) as n→∞.” If p = r/n

and G ∈ SG(H, p) then for any fixed arbitrarily small δ > 0 these bounds imply that

(1− δ)r = (1− δ)np ≤ E[v(G)] ≤ (1 + δ)np = (1 + δ)r (3)

whp provided that r →∞ and n− r →∞.

Since these two models are roughly equivalent we will focus on the model SG(H, p), appealing to

the model SG(H, r) when appropriate. As with the classical random graph, we study the threshold

2



functions for random H-sum graphs. These results should be viewed in the context that H is a

finite group that is part of a sequence of finite groups with |H| growing to infinity. Fixing a graph

theoretic property A, we can determine the threshold for lim|H∗|→∞ Pr[SG(H, p) satisfies A].

Herein we restrict ourselves to the family of cubic groups Qk = Zk2 , whose edge dependencies

remain manageable. We define n = n(k) = |Q∗k| = 2k−1 to be the number of possible vertices in our

graph. For convenience, we adopt the composition notation ab rather than the addition notation

a+ b. Furthermore, we denote the edge joining vertices a and b as (a, b) to avoid confusion with the

vertex labeled ab. Note that the edges of G ∈ SG(Qk, p) always appear in triangles: ab = c, bc = a

and ac = b are equivalent statements for a, b, c ∈ Qk. We refer to the set {a, b, ab} as an elementary

triangle. Finally for any v ∈ V (G), E[deg(v) | v ∈ V (G)] = 2 ·E[Bin((n− 1)/2, p2)] = (n− 1)p2 and

the Chernoff bounds guarantee tight concentration around this mean value when p(n) = ω(
√

1/n).

As an aside, we can view a cubic sum graph as a 3-regular hypergraph by considering the

elementary triangle {a, b, ab} as a hyperedge rather 3 separate edges (since they can only appear

together). In the sum graph corresponding to the full vertex set Q∗k, we find that every pair a, b of

vertices appears in the unique triple {a, b, ab}. In other words, we have a Steiner system of order

2k − 1.

We characterize the thresholds for the following graph properties. We start with the very early

stages of the random process.

Theorem 1 Let p = c(n)/n2/3 where 0 ≤ c(n) = o(log n). Then

Pr[SG(Qk, p) contains an elementary triangle]→


0 if c(n)→ 0,

e−c
3/6 if c(n)→ c,

1 if c(n)→∞,

where c is an arbitrary constant. Moreover, if c(n)→ c then the distribution governing the number

of elementary triangles converges to Po(c3/6).

In other words, whp SG(Qk, r) contains only isolated vertices until r ≈ n1/3. The next graph

structure to appear is a butterfly which consists of two triangles that share a vertex. The vertex set

of a butterfly has the form {a, b, ab, c, ac}. Butterflies appear in SG(Qk, r) when r ≈ n2/5.

Theorem 2 Let p = c(n)/n3/5 where 0 ≤ c(n) = o(log n). Then

Pr[SG(Qk, p) contains a butterfly]→


0 if c(n)→ 0,

e−c
5/8 if c(n)→ c,

1 if c(n)→∞,

where c is an arbitrary constant. Moreover, if c(n)→ c then the distribution governing the number

of butterflies converges to Po(c5/8).

Moving forward in the random process, we determine the threshold for the disappearance of isolated

vertices.
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Theorem 3 Consider SG(Qk, p) for p =
√

logn+log logn+c(n)
n where |c(n)| = o(log log n). Then

Pr[SG(Qk, p) contains an isolated vertex]→


1 if c(n)→ −∞,

e−e
−c/2

if c(n)→ c,
0 if c(n)→∞,

where c is an arbitrary constant. More specifically, if c(n) → c then the distribution governing the

number of isolated vertices converges to Po(e−c/2).

We can view a random cubic sum graph as a dynamic evolution over time. For each element

a ∈ Q∗k let ya be selected uniformly and independently from [0, 1]. We increase p from 0 to 1 and

include the vertex a when p ≥ ya. The graph evolves as we increase from p = 0 (where the graph

has no vertices) up to p = 1 (where the graph is Kn). For 0 < p < 1, the graph of all included

vertices has distribution SG(Qk, p). Alternatively, we can view this evolution as a random process.

A sum graph process is a sequence G̃ = (Gt)nt=1 where Gt is a sum graph on t vertices, V (Gt) ⊆ Q∗k,

and Gt−1 ⊂ Gt for 1 ≤ t ≤ n. Using the uniform distribution on the set of all such processes gives

the random sum graph process S̃G. In this interpretation, Gt ∈ G̃ has distribution SG(Qk, t).

As with the classical random graph, the threshold for the disappearance of the last isolated

vertex coincides with the threshold for connectivity. However, the connectivity of our sum graph

process is more complicated than for the classic model. Indeed, once the classic random graph

process becomes connected, it remains connected. The connectivity of a random sum graph may

oscillate. Consider the following simple example: if our first four included vertices are a, b, ab, c,

Then the graph becomes connected at t = 3 and disconnected again at t = 4. Our next theorem

ensures that once the random sum graph becomes connected, it remains connected whp.

If Q(G) is a graph property, then the hitting time τ at which Q appears is τ(Q(G̃)) = min{t ≥
0 | Gt has Q} whp where G̃ ∈ S̃G. This hitting time formulation allows us to simply express the

relationship between minimum degree δ(G̃) and connectivity κ(G̃).

Theorem 4 Consider G̃ = (Gt)nt=1, and let 1 ≤ t1 ≤ t2. If δ(Gt1) > 0 then δ(Gt2) > 0 whp. If

κ(Gt1) > 0 then κ(Gt2) > 0 whp. Finally, τ(δ(G̃) > 0) = τ(κ(G̃) > 0) whp.

Consider the following algebraic interpretation of the connectivity threshold of SG(Qk, p). Sup-

pose that we choose a random subset S ⊂ Q∗k of size r. How large must r be to ensure that for any

two elements a, b ∈ S, whp there exists some subset {c1, c2, . . . , ct} ⊂ S so that a = b +
∑t
i=1 ci?

The answer is given by Theorem 4: we must take r ≥
√
n(log n+ log log n+ ω(n)).

We compare the threshold of connectivity for the random cubic sum graph with that of the

classical Erdős-Rényi random graph model. The threshold for connectivity for SG(Qk, p) occurs

when p = Θ(
√

log n/n). This graph will have Θ(
√
n log n) vertices and Θ(

√
n(log n)3 ) edges.

For comparison, the connectivity threshold for the Erdős-Rényi random graph G(n′, p′) occurs at
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p′ = log n′/n′. In order to have graphs of similar sizes, we take n′ =
√
n log n, giving a comparable

connectivity threshold of p′ = Θ(
√

log n/n). At this point, the classical random graph also has

Θ(
√
n(log n)3 ) edges. While the size of the edges sets are similar, the structure of these random

graphs are not. For example, every vertex of the random cubic sum graph has even degree and is

contained in at least one cycle.

Finally we remark that there are many open questions concerning random cubic sum graphs. The

two most natural problems would be to identify the threshold for the emergence of a giant component

and to characterize the diameter for various values of p above the threshold for connectivity.

2 Random Cubic Sum Graphs for Small p

In this section, we prove Theorems 1 and 2. They characterize the thresholds for the appearance

of our earliest nontrivial graph structures: elementary triangles and butterflies. We start with an

intuitive motivation each threshold. For a given p, the expected number of elementary triangles is
1
3

(
n
2

)
p3: an elementary triangle is of the form {a, b, ab}, so choosing a pair of elements determines

the triangle. Each elementary triangle can be chosen in three different ways. This calculation leads

to our threshold function of p = n−2/3. The expected number of butterflies is 1
8n(n− 1)(n− 3)p5.

Indeed, we have n choices for the shared vertex, n−1
2 ways to complete the first triangle and then

n−3
2 ways to create the second triangle. We must multiply by an additional 1

2 since the order we

choose these triangles does not matter. This gives an intuitive threshold function of p = n−3/5 for

the appearance of butterflies.

To prove each theorem, we need both the Janson Inequality and the method of moments. Let

{Bi}i∈I be a set of random events with all Pr[Bi] ≤ ε. Set 4 =
∑
τi∼τj

Pr[Bi ∧ Bj ] where we sum

over all unordered pairs i, j and M =
∏
i∈I Pr[Bi]. The Janson Inequality (c.f. Theorem 8.1.1 in

[3]) states that M ≤ Pr[∧i∈IBi] ≤M exp
(

1
1−ε

4
2

)
.

Now explicitly consider the events {Bn,i}i∈I as part of a sequence depending on n → ∞. Let

Xn,i be the indicator function for the event Bn,i and set Xn =
∑
i∈I Xn,i. The method of moments

(c.f. Corollary 6.8 in [15]) states that if λ ≥ 0 is such that for every k ≥ 1, as n → ∞ we have

E[Xn]k =
∑∗
i1,...,ik

Pr[In,i1 = · · · = In,ik = 1] → λk (where this sum is taken over all distinct

ordered k-tuples i1, . . . , ik) then Xn converges to Po(λ) in distribution.

Proof of Theorem 1. For G ∈ SG(Qk, p), let Aτ be the event that the elementary triangle

τ is present. We write τi ∼ τj if τi 6= τj and the events Aτi , Aτj are not independent and set

4 =
∑
τi∼τj

Pr[Aτi
∧Aτj

] where we sum over all unordered pairs i, j.

We have Pr[Aτ ] = p3 = c(n)3/n2 = o(1) and M =
∏
τ Pr[Aτ ] = (1− p3)n(n−1)/6. Furthermore,

4 = 1
3

(
n
2

)
p3 · 32 (n− 3)p2 ≤ n3p5 = c(n)5/n1/3 = o(1). Indeed, each of the 1

3

(
n
2

)
elementary triangles

is present with probability p3. The dependence Aτi
∼ Aτj

holds if and only if |Aτi
∩ Aτj

| = 1.
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We have 3 choices for this common vertex and (n − 3)/2 choices for the additional pair. Since

Pr[Aτ ] = o(1) and 4 = o(1), the Janson Inequality gives Pr[∧τAτ ] → M → exp(−c(n)3/6). In

particular, when c(n)→ 0, there are no triangles whp and when c(n)→∞, there are triangles whp.

We analyze the case c(n)→ c using the method of moments. LetXτ denote the indicator function

for the event Aτ and set X =
∑
τ Xτ where the sum is taken over all possible elementary triangles.

We show that E[X]k → (c3/6)k for all k ≥ 1. We have E[X]1 =
∑
τ Pr[Xτ = 1] = 1

3

(
n
2

)
p3 → c3/6.

For k ≥ 2, let B be the set of all ordered k-tuples (τ1, τ2, . . . , τk) of elementary triangles. Partition

B into B1 = {(τ1, τ2, . . . , τk) | τi ∩ τj = ∅ for all i, j} and B2 = B\B1. We have

∑
(τ1,...τk)∈B1

Pr[Xτ1 = · · · = Xτk
= 1] =

k−1∏
i=0

(
1
3

(n− 3i)(n− 6i− 1)
2

)
p3 →

(
c3

6

)k
.

When choosing our (i + 1)th isolated triangle, we have already chosen 3i vertices. After choosing

one of the remaining n− 3i vertices, we have n− 6i− 1 choices for our second vertex to ensure that

our triangle is disjoint from the previous i triangles. The order we choose these two vertices does

not matter, and each triangle is chosen in three different ways.

To complete the proof, we show that the contribution from k-tuples in B2 tends to zero. For

any k-tuple of distinct elementary triangles (τ1, . . . τk) with k ≥ 2, we have∑
τ

Pr[Xτ = 1 | Xτ1 = · · · = Xτk
= 1] ≤

((
3k
3

)
+
(

3k
2

)
p+

(
3k
1

)
n

2
p2 +

1
3

(
n

2

)
p3

)
= O(1)

where the sum is taken over all elementary triangles τ /∈ {τ1, . . . , τk}. The four terms in the upper

bound correspond to the number of vertices that τ shares with the previous k triangles. Fixing

τ1, τ2 and using induction gives∑
τ3,...,τk

Pr[Xτ1 = · · · = Xτk
= 1] = O(Pr[Xτ1 = Xτ2 = 1])

where the sum is taken over all possible k − 2 tuples of elementary triangles.

For each (τ1, . . . , τk) ∈ B2, there is at least one pair of these elementary triangles that share a

vertex. Let B′2 ⊂ B2 denote the subset such that |τ1 ∩ τ2| = 1, so that the first pair of triangles in

our k-tuple create a butterfly. We have |B2| ≤ k2|B′2| and Pr[Xτ1 = Xτ2 = 1] = p5. This leads to

our bound ∑
(τ1,...τk)∈B2

Pr[Xτ1 = · · · = Xτk
= 1] ≤ k2

∑
(τ1,...τk)∈B′2

Pr[Xτ1 = · · · = Xτk
= 1]

= O

 ∑
τ1,τ2:|τ1∩τ2|=1

Pr[Xτ1 = Xτ2 = 1]


= O(4) = O

(
n3p5

)
= O(n−1/3)→ 0.

�
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Proof of Theorem 2. After isolated triangles, the next graph structure to appear is a butterfly

of the form β = {a, b, ab, c, ac}. Let Aβ be the event that butterfly β appears in the graph, so

Pr[Aβ ] = p5 = c(n)5/n3 = o(1) and M =
∏
β Pr[Aβ ] = (1− p5)n(n−1)(n−3)/8.

Calculating 4 is more involved. Events Aβ1 , Aβ2 are only dependent when β1 ∩ β2 6= ∅. Let

β1 = {a, b, ab, c, ac} and β2 = {x, y, xy, z, xz} be butterflies with |β1 ∩ β2| = k where 1 ≤ k ≤ 4,

so that Pr[Aβ1 ∧ Aβ2 ] = p10−k. As calculated at the start of this section, we may choose β1 in

n(n − 1)(n − 3)/8 < n3/8 distinct ways. Fixing β1, let Uk be the set of all butterflies intersecting

β1 in exactly k vertices, 1 ≤ k ≤ 4.

For β2 ∈ U1, we have 5 choices for this common vertex u ∈ β1 and (n− 5)/2 ways to complete

the first triangle in β2. One of these first 3 vertices must the center of T , and we complete the

butterfly in (n− 7)/2 ways. Therefore |U1| ≤ 15(n− 5)(n− 7)/4 < 4n2.

If β2 ∈ U2 then there are
(
5
2

)
ways to determine {x, y} = β1 ∩ β2, and we pick an arbitrary third

vertex z in n−5 ways. There are at most 6 possibly distinct butterflies we can construct from these

vertices, each of which is entirely determined by our choice of center from among {x, y, z, xy, yz, xz},
and so |U2| ≤ 60(n− 5) < 60n.

Next, we claim that if T ∈ U3 then a ∈ β2. Indeed, otherwise we can assume that β1 ∩
β2 = {b, c, ab} without loss of generality. Since a /∈ β2, either β2 = {b, c, bc, ab, ac} or β2 =

{b, ac, abc, c, ab}. In either case, |β1 ∩ β2| = 4, a contradiction. A similar argument shows that if

β2 ∈ U3 then either β1 ∩ β2 = {a, b, ab} or β1 ∩ β2 = {a, c, ac}. In each case, we have three choices

for the center vertex and (n− 5)/2 choices for the final two vertices. So |U3| ≤ 3(n− 5) < 3n.

Finally, we claim that |U4| = 2. Indeed, if β2 ∈ U4 then a /∈ β2 (otherwise this forces β2 = β1),

giving only two possible choices for β2: {bc, b, c, ac, ab} and {abc, b, ac, c, ab}.

Putting this all together for p = ωn−3/5, we have

4 =
∑
i∼j

Pr[Aβi
∧Aβj

] ≤ 1
2
· n

3

8

4∑
k=1

|Ui| p10−k ≤ n3

16
(
4n2p9 + 20np8 + 3np7 + 2p6

)
≤ 1

16

(
4c(n)9n−2/5 + 20c(n)8n−4/5 + 3c(n)7n−1/5 + 2c(n)6n−3/5

)
= O(c(n)7n−1/5) = o(1).

Because Pr[Aτ ] = o(1) and4 = o(1), the Janson Inequality gives Pr[∧βAβ ]→M → exp(−c(n)5/8).

In particular, when c(n)→ 0, there are no butterflies whp and when c(n)→∞, there are butterflies

whp.

Our analysis for c(n) → c is similar to the previous proof, and we sketch the argument. Let

Xβ denote the indicator function for the event Aβ and set X =
∑
β Xβ where the sum is taken

over all possible butterflies. We have E[X]1 =
∑
β Pr[Xτ = 1] = 1

8n(n − 1)(n − 3)p5 → c5/8. For

k ≥ 2, let B be the set of all ordered k-tuples (β1, . . . , βk) of distinct butterflies. Partition B into
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B1 = {(β1, . . . , βk) | βi ∩ βj = ∅ for all i, j} and B2 = B\B1. We have

∑
(β1,...βk)∈B1

Pr[Xβ1 = · · · = Xβk
= 1] =

(
n3

8
p5(1− o(1))

)k
→
(
c5

8

)k
.

As in the previous proof, the contribution from k-tuples in B2 tends to zero. For any k-tuple of

distinct butterflies (β1, . . . βk) with k ≥ 2, we have Pr[Xτ = 1 | Xτ1 = · · · = Xτk
= 1] = O(1). As

before, the two dominant terms correspond to choosing β ⊂ ∪ki=1βi and choosing β ∩
(
∪ki=1βi

)
= ∅.

The proof from this point forward is analogous to the proof of Theorem 1, using β in place of τ and

using 4 = O(c(n)7n−1/5) = o(1). �

3 Threshold for Isolated Vertices

In this section, we prove Theorem 3.

Proof of Theorem 3. Let G ∈ SG(Qk, p) where p =
√

(log n+ log log n+ c(n))/n and let X be

the number of isolated vertices in G. Then

E[X] =
∑
a

Pr[a isolated | a ∈ G] Pr[a ∈ G] = np(1− p2)(n−1)/2

= np exp
(

(n− 1)
2

log(1− p2)
)

= np exp
(
−n− 1

2
p2

)
exp

(
−n− 1

2

∞∑
k=2

p2k

k

)
.

We have

E[X] =
√
n(log n+ log log n+ c(n)) exp

(
− (n− 1)

2n
(log n+ log log n+ c(n))

)
exp

(
O

(
(log n)2

n

))

=

√
n(log n+ log log n+ c(n))

n log n
e−c(n)/2(1 + o(1)) = e−c(n)/2(1 + o(1))→ e−c(n)/2. (4)

If c(n) = ω(n) is a slowly growing function then E[X]→ 0, so X = 0 whp.

Next, we consider the case c(n) = −ω(n) where ω(n) is a slowly growing function. We have

E[X] → ∞, and we must show that X > 0 whp. Let Xa be the indicator function for element a

being an isolated vertex. Fixing elements (and potential vertices) a 6= b, we determine Pr[Xa ∧Xb].

If both a and b are isolated vertices, then vertex ab cannot be present. We analyze the remaining

n − 3 elements by constructing a dependency graph G′ with V (G′) = Q∗k\{a, b, ab} and E(G′) =

{(x, y) |xy = a} ∪ {(x, y) |xy = b}. G′ consists of disjoint 4-cycles. Indeed, E(G′) is naturally

partitioned into two perfect matchings, so G′ is 2-regular. If u, v, x, y ∈ V (G′) with uv = xy = a

and ux = b then vy = (uu)vy = u(uv)y = u(xy)y = (ux)(yy) = ux = b, so these four vertices create

a cycle.

Given that a and b are isolated vertices in G, for each of the 4-cycles of G′ we can have zero

vertices, one vertex or two antipodal vertices present in G. The combined probability of these events

8



is (1− p)4 + 4p(1− p)3 + 2p2(1− p)2 = 1− 4p2 + 4p3 − p4. This gives

E[X2] =
∑
a,b

Pr[Xa ∧Xb] = n(n− 1)p2(1− p)
(
1− 4p2 + 4p3 − p4

)(n−3)/4
(5)

where the sum is taken over all ordered pairs of elements a, b. We have

Pr[X > 0] ≥ E[X]2

E[X2]
=

n2p2(1− p2)n

n(n− 1)p2(1− p)(1− 4p2 + 4p3 − p4)(n−3)/4

≥ (1− p2)n

(1− 4p2 + 4p3)n/4
≥
(

1− p2

1− p2 + p3

)n
≥
(
1 + p3

)−n ≥ exp(−np3)→ 1.

Therefore Pr[X > 0] with high probability, meaning that there are isolated vertices below the

threshold.

Finally, suppose that c(n) → c where c is a constant. We prove that X converges to Po(e−c/2)

via the method of moments. In particular, for s > 0 we show that∑
a1,a2,...,as

Pr[Xa1 ∧Xa2 ∧ · · · ∧Xas
] =

(
e−c/2

)s
where the sum is taken over all ordered s-tuples of elements. The case s = 1 is shown by equation

(4). For s = 2, we consider the limiting behavior of equation (5):∑
a,b

Pr[Xa ∧Xb] = n2p2
(
1− 4p2 +O(p3)

)n/4
(1 + o(1))

=
(
n2p2 exp(−np2 +O(np3))

)
(1 + o(1))

= e−c(n) n(log n+ log log n+ c(n))
n log n

(1 + o(1))→ e−c.

For fixed s > 2, we must create a dependency graph G′(a1, a2, . . . , as) for having isolated vertices

a1, a2, . . . , as. This dependency graph is constructed similarly to the 2 vertex case above. First,

we consider the set B ⊂ Q∗k of size 2s − 1 consisting of elements corresponding to all possible

combinations of a1, a2, . . . , ak. Among the members of B, the s elements ai must be present and the(
s
2

)
elements aiaj must be absent. As for the remaining 2s−1−s−

(
s
2

)
elements in A, one acceptable

configuration is the absence of all of them which occurs with probability (1 − p)2s−1−(s+s2)/2 =

1−o(1) since s is fixed. There are other allowable configurations, but of course the total probability

is at most 1. In summary, the probability that the elements of A do allow for the ai to be isolated

is ps(1− p)s(s−1)/2(1− o(1)).

We consider the remaining n− (2s − 1) = 2k − 2s elements. Generalizing the 2-vertex case, our

dependency graph partitions these elements into disjoint s-hypercubes. Indeed, we first observe that

the graph H with V (H) = B∪{e} and E(H) = {(b1, b2) | b1b2 ∈ B} is the s-hypercube. This graph

is the prototype for the remaining components of G′(a1, a2, . . . , as). Indeed, let C be a component

of G′(a1, a2, . . . , as) and let x ∈ V (C). Then V (C) = {xy | y ∈ B ∪ {e}} and for xv1, xv2 ∈ V (C),

we have (xv1, xv2) ∈ E(C) if and only if v1v2 ∈ B.
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Respecting the dependency graph of C, we can only allow an independent set of vertices of C

to be present in our graph. Let ZC denote the event that the vertices in C that are present in the

graph form an independent set. Then

Pr[ZC ] = (1− p)2
s

+ 2sp(1− p)2
s−1 +

1
2

(2s)(2s − (s+ 1))p2(1− p)2
s−2 +O(p3)

= 1− (2s−1s)p2 +O(p3)

We now calculate∑
a1,a2,...,as

Pr[Xa1 ∧Xa2 ∧ · · · ∧Xas
]

= (n)sps(1− p)s(s−1)/2(1− 2s−1sp2 +O(p3))(n−2s+1)/2s

(1− o(1))

= nsps(1− 2s−1sp2 +O(p3))n/2
s

(1− o(1)) = nsps exp
(
−s

2
np2
)

(1 + o(1))

=
(
e−c(n)/2

)s (n(log n+ log log n+ c(n))
n log n

)s/2
(1 + o(1))→

(
e−c/2

)s
,

completing the proof by the method of moments. �

4 Threshold for Connectivity

In this section, we prove Theorem 4. As per equation (3), the models SG(Qk, p) and SG(Qk, r)

where r = np are essentially equivalent. We make most of our arguments using the former model,

which is easier to work with. In particular, we can define an analogous random sum graph process

for this model as follows. We assign every element a an i.i.d. weight pa drawn uniformly from [0, 1].

We increase p from 0 to 1, including vertex a when p ≥ pa. We define the resulting random process

as Ĝ = (Gp)p∈[0,1], where Gp ∈ SG(Qk, p).

In order to prove that the graph becomes connected when the last isolated vertex disappears

(and remains connected thereafter), we prove a series of lemmas. We focus on the range
√

log n/n ≤
p ≤

√
(log n+ log log n+ c)/n. For p =

√
log n/n, we show that whp SG(Qk, p) consists of isolated

vertices and a constant number of large components of size at least
√
n log n/100. Next, as p

increases from
√

log n/n to
√

(log n+ log log n+ c)/n, we show that whp the graph consists of a

small number of isolated vertices along with a single connected component. These isolated vertices

are joined to the connected component at the threshold provided by Theorem 3. Our final lemma

proves that whp no additional isolated vertices are introduced beyond this point.

Observe that

Pr[Gp is not connected] = Pr[∪n/2t=1{Gp has a component of size t}]

and therefore

Pr[Gp has an isolated vertex] ≤ Pr[Gp is not connected]

10



≤ Pr[Gp has an isolated vertex] +
n/2∑
t=3

Pr[Gp has a component of size t]

≤ Pr[Gp has an isolated vertex] +
n/2∑
t=3

E[number of components of size t].

Note that we cannot have a component of size 2 as edges appear in triangles. Define p− =
√

log n/n

and p+ =
√

(log n+ log log n+ c)/n.

Lemma 5 Let c > 0 be a constant. If p− ≤ p ≤ p+ then whp the only components of G ∈ SG(Qk, p)

with size smaller than 1
100

√
n log n are isolated vertices.

Proof. We write p =
√
g(n) log n/n where 1 ≤ g(n) ≤ 1 + (log log n + c)/ log n = 1 + o(1). For

3 ≤ t ≤ n/2, let Xt be the number of components of size t. We determine an upper bound for

E[Xt]. There are
(
n
2

)
/3 potential components of size 3. A component of size 4 is impossible. For

t ≥ 5, an upper bound on the number of possible components of size t is
(
n
t−2

)
. Indeed, if a and b

are in the component, then ab must also be in the component. A vertex c connected to this triangle

requires adding one of ac, ab, abc, so that 2 of the first 5 vertices are determined by the other 3.

Let H be a potential component of size t and let A be the event that all of the vertices in H are

present, so that Pr[A] = pt. Triangles {a, b, ab} that cross from H to G−H are of two forms: either

a, b ∈ V (G − H) and ab ∈ V (H) or a, b ∈ V (H) and ab ∈ V (G − H). Let {Bi} be the set of all

events of the former type. We will ignore the second type as they can only decrease the probability

that H is isolated: Pr[H is an isolated component] ≤ Pr[∧Bi | A] Pr[A] = pt · Pr[∧Bi | A].

We bound Pr[∧Bi | A] for three cases: t = 3, 5 ≤ t ≤
√
n/ log n and

√
n/ log n ≤ t ≤

1
100

√
n log n. We use the following version of Janson’s inequality [3, p. 116, Theorem 8.1.1] for cases

1 and 2. We write i ∼ j when i 6= j and Bi and Bj are not independent. If 4 =
∑
i∼j Pr[Bi ∧Bj ]

where this sum is over all ordered pairs, and µ =
∑
i Pr[Bi] then Pr

[∧
iBi

]
≤ exp (−µ+4/2)] .

Case 1: t = 3. For H to be an isolated triangle, we have µ = 3
2 (n− 3)p2 and 4 = 6(n− 3)p3.

Indeed, for µ, we have 3 choices for the vertex in H and (n − 3)/2 distinct choices for a vertex in

G −H (which uniquely determines the second vertex in G −H). As for 4, we choose an ordered

pair of vertices from H (one for Bi and one for Bj) and one vertex from G−H that is in both Bi

and Bj . Janson’s inequality yields Pr[∧Bi] ≤ exp(− 3
2 (n− 3)p2(1− 2p)) and therefore

E[X3] ≤ 1
3

(
n

2

)
p3 exp

(
−3

2
(n− 3)p2(1− 2p)

)
<

1
6
n1/2(g(n) log n)3/2 · exp

(
−

(
1− 2

√
g(n) log n

n

)
log n

)
→ 0.

Case 2: 5 ≤ t ≤ α
√
n/ log n for 0 < α < 1. For t in this range,

1
2
t(n− 2t)p2 ≤ µ ≤ 1

2
t(n− t)p2 (6)

11



(
t

2

)
(n− 2t)p3 =

((
t

2

)
(n− t)−

(
t

2

)
t

)
p3 ≤ 1

24 ≤
(
t

2

)
(n− t)p3 <

1
2
t2(n− t)p3. (7)

For µ, we have t choices for the vertex in H and at most (n− t)/2 choices for the vertex in G−H.

In the lower bound, we account for triangles with two vertices in H and one in G−H. As for 4/2,(
t
2

)
(n− t) is an upper bound on the number pairs of triangles containing distinct vertices in H and

sharing one vertex in G−H. Finally,
(
t
2

)
t is an upper bound on the number of pairs of intersecting

triangles with at least one triangle having two vertices in H (pick 2 vertices in H for one triangle

and another vertex in H for the second triangle). We have

E[Xt] ≤
(

n

t− 2

)
pt exp (−µ+4/2) ≤

(
npe

t− 2

)t−2

p2 exp
(
− tp

2

2
(n− 2t) +

t2p3

2
(n− t)

)
.

Substituting p =
√
g(n) log n/n and taking the logarithm yields

log(E[Xt]) ≤ −2 log n+
t

2
log log n+ (t− 2) log

(
e

t− 2

)
+
t2g(n) log n

2n

(
2 +

√
ng(n) log n− t

√
log n
n

)
. (8)

We consider the endpoints. Taking t = 5, we find log(E[X5]) = −2 log n + O(log log n) → −∞, so

that E[X5]→ 0 and therefore there are no components of size 5 whp. Now consider t = α
√
n/ log n

where 0 < α < 1. In this case,

log(E[X
α
√
n/ logn

]) ≤
(
−α

2
+
α2

2
(g(n))3/2

)√
n log n+O

(√
n

log n
log log n

)
→ −∞,

confirming that whp there are no components of size α
√
n/ log n.

We now show that when 5 < t�
√
n/ log n, whp equation (8) tends to −∞. Taking its derivative

with respect to t and solving for any critical points gives the equation

1
2

log log n = log(t− 2)− t g(n) log n
n

(
2 +

√
ng(n) log n

)
+

3
2
t2g(n)

(
log n
n

)3/2

.

The left hand side is independent of t and the only possible critical point in the given interval is

roughly t ≈
√

log n + 2. Therefore this critical point is of the form t = β
√

log n where |β − 1| < ε

for arbitrarily small ε. Near this critical point, equation (8) becomes

log(E[Xβ
√

logn]) ≤ −2 log n+O(
√

log n log log n)→ −∞.

This guarantees that there are no components of size 5 < t�
√
n/ log n.

Case 3:
√
n/ log n ≤ t ≤ 1

100

√
n log n. Just as in Case 2, equations (6) and (7) hold. Therefore,

µ ≤ 1
2 (n−t)tp2 = 1

2np
2t(1−o(1)) and4 ≥ 2

(
t
2

)
(n−2t)p3 ≥ np2t(1−o(1)). For large n,4 ≥ µ and the

extended form of Janson inequality [3, p. 117, Theorem 8.1.2] holds: Pr
[∧

iBi
]
≤ exp

(
−µ2/24

)
.

Using the complementary bounds in equations (6) and (7), the inequality yields

Pr

[∧
i

Bi

]
≤ exp

(
− (n− 2t)2p

4(n− t)

)
≤ exp

(
−1

5
(n− 2t)p

)
.
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This gives

E[Xt] ≤
(
n

t

)
pt exp

(
−1

5
(n− 2t)p

)
≤
(npe

t

)t
exp

(
−1

5
(n− 2t)p

)
and taking the log gives

log(E[Xt]) ≤ t log
(npe

t

)
− 1

5
(n− 2t)p =: f(t). (9)

We consider the endpoints. First, t =
√
n/ log n:

log(E[X√
n/ logn

]) ≤ − 1
10

√
n g(n) log n+O

(√
n

log n
log log n2e

)
→ −∞

for n sufficiently large. Next, t = 1
100

√
n log n:

log(E[Xt]) ≤
(
− 1

10
+

log(100e)
100

+
1
2

log g(n)
)√

n log n+O(log n)→ −∞

for n sufficiently large. To settle all values in between, the derivative f ′(t) of the right hand side of

equation (9) is

d

dt
f(t) = log

(np
t

)
+

2
5
p ≥ log(100 g(n)) +

2
5

√
g(n) log n

n
> 0.

That f ′(t) is positive on this interval ensures E[Xt]→ 0 for all such t. �

Lemma 6 Consider the evolution from Gp− to Gp+ . At the conclusion of this phase, Gp+ consists

one a large connected component along with some (perhaps zero) isolated vertices whp.

Proof. Lemma 5 ensures that when p = p−, the only components of size smaller than
√
n log n/100

are isolated vertices. We now show that as p increases from p− to p+, any components of size at

least
√
n log n/100 must coalesce so that the graph becomes one connected component along with

some isolated vertices.

As shown in equation (3), whp SG(Qk, p) looks like SG(Qk, r) where r = np (here we choose

r random vertices). We consider this model for convenience. Let r1 = np− =
√
n log n and

r2 = np+ =
√
n(log n+ log log n+ c). Then whp

a = r2 − r1 =
√
n log n

((
1 +

log log n+ c

log n

)1/2

− 1

)

≥ 1
2

√
n log n

(
log log n+ c

log n

)
=

log log n+ c

2

√
n

log n

is the number of vertices that will be added to arrive at the final graph.

Let G ∈ SG(Qk, r1) so that v(G) = r1 =
√
n log n. There are at most 100 connected components

of size at least
√
n log n/100. Let H1, H2, . . . ,Hs be these large components where 1 ≤ s ≤ 100.
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For any pair Hi, Hj there must be at least n log n/10000 potential edges between them. Label

each of these potential edges by the element v whose addition will add that edge to the graph.

For each element v /∈ V (G), let Xv denote the number of potential edges with label v. Then

E[Xv] = 1
2 (n − 1)p2

1 = 1
2 log n(1 − o(1)). We use Chernoff’s inequality (1) to show that whp

every v ∈ Q∗k\V (G) has at most 3
2 log n associated labeled edges. Let Yi denote the event that

Xi ≥ 3E[Xi] = 3
2 (1− o(1)) log n. Then

Pr[∨Yi] ≤
∑
vi /∈G

Pr[Xi > 3E[Xi]] ≤ (1− o(1))n exp(−5(1− o(1)) log n) ≤ n−3 → 0.

It follows that whp there are at least n/15000 distinct labels between any two components. Let Zij

denote the number of edges induced between distinct components Hi and Hj via the addition of

the a random vertices to G. We have

µij = E[Zij ] ≥ a ·
n

15000
· 1
n−
√
n log n

≥ a

15000
≥ log log n

30000

√
n

log n
.

Once again we combine a union bound along with the Chernoff inequality to show that all these

large components must coalesce into a single component whp. Indeed,

Pr[∨(Zij = 0)] ≤
∑
i,j

Pr[Zij = 0] ≤
∑
i,j

Pr[Zij <
1
2
µij ] ≤ 10000 exp (−µijφ(1/2))

≤ 10000 exp
(
−1− log 2

60000
log log n

√
n

log n

)
→ 0.

Finally, we claim that any newly created component must be an isolated vertex. Indeed, by

Lemma 5, all non-isolated vertices must be in components of size at least
√
n log n/100. We have

only added a�
√
n log n/100 vertices, so these vertices cannot be part of a new small component.

Therefore whp we have one large component along with (perhaps) some isolated vertices. �

Let q =
√

(log n+ log log n− log log log n)/n. By Theorem 3, the graph Gq has isolated vertices

whp. We now show that for p > q, whp no isolated vertices are added in Gp. In other words, the

set of isolated vertices in Gp decreases monotonically for p > q.

Lemma 7 Whp, every element a ∈ Q∗k such that pa > q has degGpa
(a) > 0.

Proof. We partition [0, 1] into four intervals, each representing a phase in the evolution our

random cubic sum graph. We will show that every vertex added in the latter three stages will

be adjacent to existing vertices. Let q0 = 0, q1 = q =
√

(log n+ log log n− log log log n)/n, q2 =√
(log n+ 2 log log n− log log log n)/n, q3 =

√
(2 log n+ 2 log log n− log log log n)/n and q4 = 1.

Let Wi = {a ∈ Q∗k | pa ∈ [qi−1, qi]} for 1 ≤ i ≤ 4. Consider the sequence of graphs Gq1 , Gq2 ,

Gq3 , and Gq4 = Kn. Note that V (Gqi
) = ∪ij=1Wj . We claim that for 2 ≤ i ≤ 4, whp every vertex

in Wi is adjacent to some pair of vertices that already appear in Gqi−1 ⊂ Gpa . Indeed, for a ∈ Wi,
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let Za denote the indicator for event that a does not form a triangle with pairs of vertices in Gqi−1 .

We have

Pr
[ ⋃
a:pa>q

(a is an isolated vertex in Gpa
)
]
≤ Pr

[
∨a∈W2∪W3∪W4 Za

]
≤

∑
a∈W2

E[Za] +
∑
a∈W3

E[Za] +
∑
a∈W4

E[Za].

Using q2 =
√
q21 + log log n/n ≤ q1 +

√
log log n/n, we can bound∑

a∈W2

E[Za] ≤ (q2 − q1)n(1− q21)n/2

≤
√
n log log n exp

(
− log n+ log log n− log log log n

2

)
=

√
n log log n

√
log log n
n log n

=
log log n√

log n
→ 0.

Similarly, we have q3 =
√
q22 + log n/n ≤ q2 +

√
log n/n, so that∑

a∈W3

E[Za] = (q3 − q2)n(1− q22)n/2

≤
√
n log n exp

(
− log n+ 2 log log n− log log log n

2

)
=

√
n log n

√
log log n
n (log n)2

=

√
2 log log n

log n
→ 0.

Finally, ∑
c∈W4

E[Za] ≤ n(1− q23)n/2

≤ n exp
(
−2 log n+ 2 log log n− log log log n

2

)
= n

√
log log n
n log n

=
√

log log n
log n

→ 0.

Hence Pr[
∨
a∈W2∪W3∪W4

Za]→ 0. �

Proof of Theorem 4. Equation (3) guarantees the equivalence of the random sum graph processes

G̃ = (Gt)nt=1 and Ĝ = (Gp)p∈[0,1]. We prove the theorem for the latter formulation. We consider the

evolution starting from Gq. By Theorem 3, there are isolated vertices whp when p = q. By Lemma

7, whp no new isolated vertices are introduced beyond this point. Therefore, once the minimum

degree is nonzero, it remains nonzero thereafter whp.

We now turn our attention to the connectivity of the graph. First we consider the evolution from

Gq to Gp+ . By Lemma 6, Gp+ consists of one large connected component plus some isolated vertices.

Moreover, the proof of Lemma 6 shows that no new small components are created for q < p < p+.
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Therefore every vertex v added during this phase is contained in the unique large component of

Gpv
. Now consider the random sum graph process starting from Gp+ . The only obstruction to

connectivity is the existence of isolated vertices that were included for p < q. When these isolated

vertices disappear, the graph becomes connected, so that τ(δ(Ĝ)) > 0) = τ(κ(Ĝ) > 0). Once the

graph becomes connected, it remains connected whp since no new isolated vertices are introduced

for p > q. �
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[15] S. Janson, T.  Luczak and A. Ruciński, Random Graphs, John Wiley & Sons, New York, 2000.

[16] M. Miller, J. Ryan, K. Slamin, and W. Smyth, Labelling wheels for the minimum sum number,

J. Combin. Math. Combin. Computing, 28, 1998, pp. 289–297.

[17] M. Molloy and B. Reed, A critical point for random graphs with a given degree sequence, in

Proceedings of the Sixth International Seminar on Random Graphs and Probabilistic Methods

in Combinatorics and Computer Science, “Random Graphs ’93” (Poznan 1993), 6, 1995, pp.

161–179.

[18] M. Penrose, Random Geometric Graphs, Oxford University Press, Oxford, England, 2003.

[19] S. Slamet, K. A. Sugeng and M. Miller, Sum graph based access structure in a secret sharing

scheme, Journal of Prime Research in Mathematics, Vol.2, 2006, pp. 113-119.

17


