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Abstract

In the rendezvous search problem, two or more robots at unknown locations should
meet somewhere in the environment as quickly as possible. We study the symmetric
rendezvous search problem in unknown planar environments with polygonal obstacles.
In the symmetric version of the problem, the robots must execute the same rendezvous
strategy. We consider the case where the initial distance between the robots is unknown,
and the robot is unaware of its and the other robots’ locations in the environment. We
first design a symmetric rendezvous strategy for two robots and perform its theoretical
analysis. We prove that the competitive ratio of our strategy is O(d/D). Here, d is the
initial distance between the robots and D is the length of the sides of the square robots.
In unknown polygonal environments, robots should explore the environment to achieve
rendezvous. Therefore, we propose a coverage algorithm that guarantees the complete
coverage of the environment. Next, we extend our symmetric rendezvous strategy to n
robots and prove that its competitive ratio is O(d/(nD)). Here, d is the maximal pairwise
distance between the robots. Finally, we validate our algorithms in simulations.

Keywords: Multi-robot systems, planning in complex environments, rendezvous search,
coverage planning.

1 Introduction

In the rendezvous search problem, n players want to meet as quickly as possible. However,
they cannot communicate over long distances and they are unaware of their locations in the
environment. Examples of this fundamental problem include parachutists who must regroup
after landing in different positions, and a mother who loses her child while wandering the
aisles of a supermarket. Rendezvous search has important applications in search and rescue
operations. For example, Thomas and Hulme [2] study the rendezvous of a rescue helicopter
looking for a walker who is lost in the desert and wants to be found.

*A preliminary version of this paper appeared in [1]. This version includes the proofs omitted in [1] and a
new algorithm for the multi-robot case presented in Section 6.
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Rendezvous may be part of a more complicated task. For example, mobile robots are used
to explore a dangerous environment to gather data. In situations where the topography of
the environment is inconvenient, these robots might not be able to communicate over long
distances or without unobstructed line-of-sight between them. A rendezvous algorithm can be
used to conglomerate the collected data.

There are two primary versions of the rendezvous search problem. In the symmetric version
(such as the parachutists), robots follow the exact same rendezvous strategy. In asymmetric
rendezvous search, the players can choose separate roles in advance and execute distinct strate-
gies. For example, one can remain stationary, while the other actively searches; this strategy
is often called “wait for mommy.”

The most critical parameter in robot motion is the physical distance traveled, since move-
ment is energy-intensive. Therefore, we here aim to minimize the expected distance traveled
by the robot. We use the competitive analysis to measure the performance of our symmetric
rendezvous strategy. The efficiency of a rendezvous strategy S between two robots is often
measured by its competitive ratio
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Here = and y are initial locations of robots in an environment @, and S;(x,y) denotes the
(expected) distance traveled by robot i before rendezvous, i = 1,2, and d(z,y) is the length
of the shortest path connecting x and y. A strategy is said to be competitive if its competitive
ratio is a constant. In equation (1), the competitive ratio is given with respect to the total
distance traveled. Other measures such as the maximum distance traveled can also be used.

We study the symmetric rendezvous search problem in planar environments populated with
polygonal obstacles. Like covert parachutists who land in the dark, we assume that the robots
start with very little information: they do not have a map of the environment, and they are
unaware of the locations of each other, their own locations and the initial distance between
them. Starting with two robots, we design and analyze a symmetric randomized algorithm.
While obtaining the bounds for the rendezvous algorithm, we propose a coverage algorithm
that guarantees the complete coverage of the environment and analyze its performance. We
then extend our algorithm for multiple robots. The competitive ratio of our strategy is O(d/D)
for two robots, where d is the initial distance between the robots and D is the length of the
sides of the square robots. For n robots, the competitive ratio of our strategy is O(d/(nD)),
where d is the maximal pairwise distance between the robots. Finally, we verify our theoretical
results with simulations performed in sample environments.

This paper is organized as follows. In Section 2, we survey the literature on rendezvous
search, exploration and coverage problems. We present our rendezvous strategy in planar
environments with obstacles in Section 3 and the analysis of our coverage algorithm in Sec-
tion 4. In Section 5, we compute the performance of our symmetric rendezvous strategy. The
extension of our strategy to n robots is given in Section 6. In Section 7, we present the results
from the simulation experiments conducted in different environments. Finally, we provide the
concluding remarks in Section 8.



2 Related Work

The rendezvous search problem generalizes the linear search problem, also known as the 2-lane
lost cow problem. In this formulation, a near-sighted cow tries to find the only gate in a long,
straight fence. The gate is located at an unknown initial distance d, either to the left or the
right of the cow. This linear search problem was originally solved in [3] and that solution was
rediscovered in [4].

In the deterministic online Spiral LostCow algorithm, the cow alternately searches to its left
and then to its right starting from its initial location x = 0. Spiral LostCow is a 9-competitive
algorithm, which is the best possible performance for a deterministic online algorithm. Kao
et al. [5] introduced the randomized algorithm SmartCow, which follows the same zig-zag
strategy except that it uses randomization at beginning of the algorithm to choose the initial
search distance and the order of the paths explored. SmartCow guarantees competitive ratio
of 4.591, which is the best ratio that can be achieved by any randomized algorithm.

In the m-lane lost-cow problem, the cow at the meeting point of m concurrent rays searches
a gate at d distance on one of the rays. The best algorithm is a generalization of the Spiral
LostCow algorithm, which is 1+ 2m™/((m — 1)~ !)-competitive and proved to be optimal by
Baezayates et al. [4]. For this problem, Dasgupta et al. [6] showed that there is no depth-first
iterative deepening (DFID) strategy which is optimal except when m = 2.

The rendezvous search problem on the line has been well studied for both symmetric [7,
8,9, 10, 11, 12, 13, 14] and asymmetric [15, 13, 16, 17, 18] versions. Alpern [7] introduced a
symmetric strategy for the known 2d initial distance between two players. Over the years, the
analysis of this algorithm has been improved, so that guaranteed competitive ratio has been
decreased from Alpern’s initial value of 5 to 4.5678 by Anderson and Essegaier [8], to 4.4182
by Baston and Gal [13], and to 4.39306 by Uthaisombut [10]. Baston and Gal [13] considered a
symmetric rendezvous formulation in which the probability distribution of the initial distance
2d between two players is unknown except its expected value, which is F[2d] = u. They provide
a symmetric algorithm with expected meeting time 13.325u, corresponding to competitive ratio
26.650. Ozsoyeller et al. [14] proposed a symmetric rendezvous algorithm at an unknown (and
arbitrary) initial distance between two robots, that has a competitive ratio of 17.686 for total
distance traveled and a competitive ratio of 24.843 for total time.

Another well-studied rendezvous problem is the rendezvous of two mobile agents that have
to meet at some node of a graph [19, 20, 21, 22, 23, 24]. Anderson and Weber [25] propose
a randomized strategy (AW) for the symmetric rendezvous of two players that are initially
placed at two distinct vertices on a completely connected graph with n vertices. The players
either stay at their initial vertices or tour the other n—1 vertices in random. Weber [26] shows
that AW-strategy is optimal for n = 3.

In this paper, we study the symmetric rendezvous of two and n robots in planar environ-
ments with polygonal obstacles. The most common variant of the rendezvous search problem
in obstacle-free planar environments is the asymmetric case [27, 28, 2]. Anderson and Fekete
[28] study the asymmetric rendezvous of two players in a planar environment. They consider
three cases: (1) when one of the players is placed at an initial position chosen equiprobably
from a finite set of points, (2) when both players know the initial distance between them, but
not the direction in which they should travel, and (3) when the first player knows the location
of the second player but the second player only knows the initial distance to the first player.



Some strategies are designed around a set of pre-determined meeting point options. Roy
and Dudek [29] consider the rendezvous of two robots with limited vision, exploring an un-
known environment with potential rendezvous points called landmarks. Anderson and Weber
[25] study the symmetric rendezvous of two friends who separate from each other in a building
or a mall with n possible rendezvous locations. The minimal expected time of their rendezvous
strategy is 2 for n = 2 and 8/3 for n = 3.

Researchers have also explored rendezvous of agents moving on the n dimensional lattice.
They consider the rendezvous time for two agents starting at a known initial distance 2. The
expected number of steps before meeting is called the rendezvous value, denoted by R®*(n)
(asymmetric strategies) and R*(n) (symmetric strategies). Alpern and Street [30] give a one-
dimensional strategy with R%(1) = 3.25, and Alpern and Baston [27] give a two-dimensional
strategy with R%(2) = 6.16. For general n, Alpern and Street [30] show that the rendezvous
times satisfy R%(n) < 8n/3 and R*(n) < 56n/9.

Collins et al. [31] study the asynchronous rendezvous of two location-aware agents with
limited vision in two dimensional environments without obstacles. Here, asynchronous means
that an adversary can interfere with the timing of each action. The cost of their rendezvous
algorithm, which is measured by the total distance traveled by the agents, is O(d?), where d is
the initial distance between the agents. The asynchronous rendezvous of two anonymous agents
on a § > 0 dimensional grid is studied in [32]. The agents are initially located at arbitrary
positions separated by distance d. Each agent knows its position but not the other agent’s
position. The proposed algorithm requires the agent to travel a path length of O(d‘spoly log d)
to meet.

The gathering problem is another variant of rendezvous in which two or more identical
robots use the same algorithm to meet in finite time, and this meeting point is not determined
in advance. In gathering problem, robots operate in Wait—Look—Compute—Move cycles.
Thus, the robots decide on their moves on viewing their surroundings and analyzing the con-
figuration of robot locations. Each robot starts in a waiting state ( Wait). It then wakes up and
observes the positions of all other robots within its visibility range which can be either limited
or unlimited (Look). The robot then calculates its destination point based on the observed
locations of the robots (Compute). In the final step, it moves to the computed destination
point (Mowve); after the move it goes back to a waiting state. In comparison, rendezvous search
assumes extremely limited sensing capabilities, for example collision detection.

The gathering problem has been studied under models that differ in synchronicity, visibility,
dimension or the obliviousness of the robots. In an asynchronous model (ASYNCH), there is
no common notion of time, so the operation cycle is not performed simultaneously for each
robot [33, 34, 35, 36, 37, 38, 39, 40, 41, 42], whereas a common clock is used in the synchronous
model (SYNCH). The Semi-synchronous model (SSYNCH) is similar to SYNCH model, except
that only some of the robots are activated at each clock tick. Suzuki and Yamashita [43] proved
that it is impossible to achieve gathering of two oblivious autonomous mobile robots that have
no common sense of orientation under the SSYNCH model, in a finite time.

In the unlimited visibility setting, the robots can sense the entire space [40, 44, 43]. This
case is easier, however less realistic than the limited visibility case [45, 46], in which a robot can
only locate the robots within its visibility range. Robots are usually anonymous and treated as
points which are dimensionless objects that do not obstruct each other’s visibility or movement.
In contrast, Jurek et al. [39] represent the robots by unit disks. Another attribute that differs



in the researches is the obliviousness of the robot. Oblivious robots do not remember their
previous actions or the previous positions of the other robots [36, 39, 33, 37|, while non oblivious
robots can use this information to determine their next step [44].

Another variation of the rendezvous problem is the coalescence problem in which the goal
is to form a single connected network between mobile robots independently searching for peers.
The term coalescence emphasizes that the connected component spreads as more robots join
it. Poduri and Sukhatme [47] study the coalescence problem with the robots that do not know
about the environment or positions of other robots. They show that as the number of robots
N increases, coalescence time decreases as O(1/v/N) and Q(log(N)/N).

Finally, we note that there are other important rendezvous problems, including designing
local control strategies [48, 49, 50, 51, 52, 53]. The rendezvous problem in control theory
concerns robot tracking and navigation toward a moving object (target) where the agents
can observe one another’s state. These studies emphasize the control-theoretic aspects of the
problem, such as combining the kinematics equations of the robot and the target. In this
paper, we study the rendezvous search problem. The lack of state information differs this
problem from the rendezvous tracking and navigation problem.

2.1 Exploration and Coverage Problems

The rendezvous problem is related to the exploration problem and the coverage problem. Typ-
ically the goal of exploration is to generate a map of the environment using the measurements
acquired from the sensors on the robots. In the coverage problem, the map of the environment
may be known or unknown and the robot aims to visit every point in the environment (with
its sensors).

In the studies where an unknown environment is explored with unlimited vision, a vision
sensor is assumed to see an object at any distance. In an influential paper, Deng et al.
[54] consider exploration with unlimited vision, providing a 2-competitive algorithm for an
obstacle-free rectilinear environment. This value was improved by Hammar et al. [55] to 5/3.
Kleinberg [56] proves that the lower bound for any deterministic exploration algorithm is
5/4, and provides a randomized algorithm which achieves that competitive ratio. Turning to
environments with polygonal obstacles, Deng et al. [54] showed that there is no randomized
competitive strategy for a polygon with an arbitrary number of polygonal obstacles, even if
polygons are parallelograms. Albers et al. [57] later showed that no deterministic or randomized
online algorithm for exploring a two dimensional environment with n rectangles can be better
than Q(y/n)-competitive. Interestingly, a competitive ratio of ©(min(k,Vka)) is achieved for
convex polygonal obstacles [58], where & and k are the average aspect ratio and the number
of objects, respectively. The aspect ratio of a convex polygonal object O is defined as R/r
where R is the radius of the smallest circle that circumscribes O and r is the largest circle that
inscribes O. The average aspect ratio is the sum of the aspect ratios of the k objects divided
by k.

Limited vision exploration of polygons has also been well-studied. Gabrielly and Rimon
introduce Spanning Tree Covering (STC) algorithms in [59, 60], which guarantee near-optimal
covering paths, provided that the perimeter of the obstacles is small compared to the area to
be covered. Fekete and Schmidt [61] study exploration by discrete vision robot in rectilinear
polygons without holes and obstacles, giving an online algorithm with competitive ratio of



O(log A), where the aspect ratio A is the ratio of the maximum and minimum edge length of
the polygon.

Gabriely and Rimon [62] present an online navigation algorithm (SAD1) for a mobile robot
with planar body of size D and limited vision to explore an unknown environment to find a
target T. Their approach follows a strategy similar to our rendezvous algorithm. The robot
centered at S selects a disk of radius Ry and covers the parts of the disk that is reachable
from S. They partition the environment into a grid of D sized cells. Grid is consisted of
free, occupied or partially occupied cells. Robot executes a simple DFS Algorithm on the free
cells for coverage tour. Their coverage pattern differs from ours, in that they assume that the
cost of covering a partially obstructed cell is the same as covering a free cell. We take these
partially occupied cells into account, and guarantee complete coverage of the environment.

Ghosh et al. [63] study the exploration of an unknown cellular room. The room is defined
as a P polygon that consists of the square cells of a grid with obstacles. Their CellExplore
strategy explores P in at most C' + %E + H — 3 steps, where P contains C' square cells, F
edges and H obstacles. Czyzowicz et al. [64] consider exploration of an unknown terrain with
impassable obstacles by a mobile robot presented as a point in the plane. Both the terrain
and the obstacles are modeled as arbitrary polygons. They give an exploration algorithm with
a complexity of O(P + A + v/Ak), where A is area of the terrain, P is the perimeter of the
terrain (including the perimeter of the obstacles) and k is the number of obstacles. Similar to
our rendezvous strategy, their algorithm tiles the area with squares and traverses the resulting
grid using DFS. In comparison, our strategy has a smaller cell coverage cost.

Turning to coverage problems, Easton and Burdick [65] study the boundary coverage prob-
lem in a two-dimensional environment by k identical holonomic point robots. Each robot can
accurately localize itself and has an omnidirectional “inspection sensor”. Choi et al. [66] uses
boustrophedon motions, boundary-following motions, and the Theta* algorithm known as B-
Theta* to tackle the online complete coverage task of cleaning robots in unknown workspaces
with arbitrarily-shaped obstacles. For known two-dimensional environments populated with
arbitrary obstacles, Xu et al. [67] propose a polynomial time complete coverage algorithm
which is based on the boustrophedon cellular decomposition technique. They also present
the extensions of this algorithm for non-holonomic vehicular dynamics. In [68], Yao presents
a modified sweeping line strategy for complete coverage problem in a known environment
that aims to minimize the number of non-effective relocation moves. A non-effective move is
described as the movement of the robot in the area that has been fully covered before.

There are two classes of coverage problems: single coverage and repeated coverage. In the
single coverage problem, the goal is to cover all the accessible points at least once, whereas,
it is to cover them repeatedly in the repeated coverage problem. Fazli et al. [69] study the
single coverage problem for a known environment by multiple robots with limited visibility.
Their strategy locates a set of static guards on the target area and builds a graph based on
the constrained Delaunay triangulation. Later work [70] addresses the problem of repeated
coverage of a polygonal target area by a team of limited-visibility robots. Strimel and Veloso
[71] investigate the coverage planning problem for a single robot with a fixed energy capacity.
A battery constrained sweep algorithm (BC Sweep), which extends the boustrophedon cellular
decomposition coverage algorithm is introduced.

Zheng et al. [72] study a multi-robot coverage algorithm which employs a balanced tree
cover. The cover time of the proposed Multi-Robot Forest Coverage algorithm is at most



eight times larger than optimal. Agmon et al. [73] construct a coverage spanning tree for both
online and offline coverage. They give a polynomial time offline algorithm and a linear time
online algorithm for communication-enabled robots. Khan et al. [74] study an online approach
for complete coverage path planning of mobile robots in an unknown workspace. They use
a sequence of boustrophedon motions, where the next starting point is determined using the
current knowledge of the environment map. Shnaps and Rimon [75] consider coverage of an
unknown planar environment with obstacles by a mobile size D robot tethered by a cable of
length L. Their online tethered coverage (TC) algorithm has competitive ratio 2L/D.

3 Symmetric Rendezvous in Planar Environments with Obsta-
cles

In [1], we design a symmetric rendezvous strategy (SP) for obstacle-free planar environments.
The robots have very limited information: they do not know their own position, the position
of the other robot, nor the initial distance between them. We consider the synchronous case,
where the robots share a common clock and start searching at the same time. We adapt the
SP algorithm for planar environments with obstacles by providing a motion path that can
handle obstacles. The adapted algorithm is called SP,. We make the following assumptions.

1. The environment is unknown.

2. The obstacles in the environment are polygonal.

3. A robot moves via translation (it does not rotate).

4. A robot measures D x D square, and is equipped with obstacle detection sensors.

5. Two robots meet when their D x D squares touch one another.

3.1 Symmetric Rendezvous Search Algorithm

We present our motion planning algorithm using a configuration-space C' in which the D x
D square robot is represented as a point robot. We construct C-obstacles by taking the
Minkowski sum of every obstacle with a D x D square. We assume that this configuration
space is connected, making rendezvous achievable. We consider the C-obstacles to be open
sets (omitting their boundaries) to accommodate the movement of the robot between two
obstacles with a distance D opening between them. In our configuration space, the point
robot can traverse the one-dimensional boundary separating these open C-obstacles. Finally,
we note that if the point robot is within distance D of a robot in the configuration space, then
the actual robots will meet.

The algorithm proceeds in rounds indexed by i € ZT. At the beginning of each round, the
robot flips a weighted coin to decide whether to move or wait in that round. If the robot tosses
heads, then it draws a disk Disk; of radius r* centered at its initial location where r is the
expansion radius of the robot (optimized in Theorem 7). The robot discretizes the continuous
area in Disk; into a grid of square D x D cells. Then it covers every grid cell in Disk; using
the coverage algorithm C A described below. If the robot tosses tails, then it waits long enough



so that another robot could have covered Disk;, which keeps the rounds in sync. We calculate
this wait time in Section 4. Algorithms 1 and 2 present SP, and C A, respectively.

Algorithm 1 : SP,, Symmetric rendezvous search algorithm in environments with obstacles.

Input: C-obstacle with removed boundary of the expanded obstacles.

Input: D.
1: 7+ 1.225
2: 140
3: head < 0
4: tarl < 1
5: coin < random from {0,1}
6: while Check_Rendezvous() # true do
7. if coin = head then
8: start_time < Current_Time()
9: N; « ”5? /* Number of cells inside the disk with radius r* */
10: grid_size < ’V\/ﬁl-‘
11: /* Ceenter 1s the cell the robot is initially located */
12: Create_Grid(Ceenter, grid_size)
13: CA(Creenter, Grid)  /* Coverage Algorithm */
14: Wait(4N; D + start_time - Current_Time())
15:  else if coin = tail then
16: Wait(4N;D) /* Waiting time is proved in Theorem 6 */
17: end if

18: 1+ 1+1
19:  coin < random from {0,1}
20: end while

We describe the C'A procedure in more detail. Create the dual graph of the grid cells in
Disk;, connecting two cells when their common boundary is not fully obstructed. For example,
in Figure 1, Cell E neighbors Cells B, D, H and F, and each of these shared boundaries intersects
obstacles. We discover a spanning tree of the dual graph by performing a depth first search,
visiting the children of the current vertex in counterclockwise order. Our motion plan within
a cell employs counter-clockwise boundary following (CCWBF) to trace the four sides of the
cell. We assume that the robots have a relative (local) localization mechanism (e.g. odometry
and camera) with which they can determine whether they have reached the boundary of the
current cell. We transition into a child cell at first opportunity, recursively following CCWBF
in that cell and its children. Except for the initial cell, each cell has a single entrance point,
and up to three exit points. In general, we return to a parent cell only after traversing all four
sides of its child cell (and of the child’s descendents). We return to the parent cell at the same
point that we exited, and continue the CCWBF traversal of that cell. Note that we must keep
track of distance traveled, so that we do not re-enter a cell that has already been partially
explored.

Figure 1 illustrates the C A trajectory in 3 x 3 environments with and without obstacles.
Recall that the environment is unknown to the robot, so it discovers the environment (and its
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Figure 1: (a) Sample run of the coverage algorithm in an environment with obstacles. (b)
Sample run of the coverage algorithm in an environment without obstacles. The corresponding
DFS Trees show the order that the cells are visited in these environments. In round 4, the
robot covers 3 x 3 grid inside a disk of radius 7. The robot starts in Cell-E. An arrow denotes
the direction of movement and a star denotes the first entrance of a cell.



Algorithm 2 : CA(Ceyrrent, G)

// Ceenter : the cell the robot is initially located

// Ceurrent : the cell the robot is currently moving in

// Chparent : the cell from which the robot enters Ceyrrent

/] Cenia : one of the neighbor cells of Cryprent

1: Follow the obstacle/cell boundary of Ceyprent in a counter clockwise fashion

2: 1 Get,Id(er,,em)

3: if Gli].entrance = G[i|.getCurrPos() then
4:  Gli].covered «+ true

5. if i = Ceenter then

6: return

7. else

8: Ceurrent < Gli].parent

9: Enter Ceyprent

10: end if

11: else

12: if Hit,Boundary(Cchild) and Cepig 75 Cparent then
13: 14+ Get,Id(Cchild)

14: Gli]l.parent < Ceyrrent

15: Ccurrent < Cchild

16: Enter Ceyrrent

17: G[i].entrance + Gli].getCurrPos()

18:  end if

19: end if

20: CA(Ccurrent7 G)

obstacles) as it methodically explores each cell. The cells are indexed between A-I and the
robot is initially located at Cell-E. Arrows show the direction of movement in a cell and the
stars show entrance of each cell. The DFS trees in Figure 1 show the order that the robot
visits the grid cells. In Figure 1(a), the robot first moves in upward direction in Cell-E and it
turns left at the upper obstacle to start CCWBF. Upon encountering the boundary of Cell-D,
the robot enters that cell and follows CCWBF until it reaches the boundary of cell-A. The
robot visits all four boundaries of Cell-A (since cell-A has no children) and the robot comes
back to its entrance of Cell-A. The robot then continues CCWBF in Cell-D until it reaches
the boundary of Cell-G, where it moves to recursively cover that cell. All the other grid cells
are covered in a similar way by the robot.

4 The Analysis of the Coverage Algorithm

In this section, we give an upper bound on the coverage time of C'A by bounding the time
that the robot spends in a given cell, and then bounding the number of cells in Disk;. We
define the regions in a cell C; to be the maximal two-dimensional open subsets of C; after
removing the obstacles in the configuration space C. First, we show that the geometry of C-
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Figure 2: Examples of a cell split into two regions by different C-obstacles, which are shown
lightly shaded. (a) The two regions are connected by a point. (b) The two regions are connected
by a line segment.

(a) (b)

Figure 3: Concave corner of obstacle P (dark) and its corresponding corner in C-obstacle
P’ (dark plus light). (a) The edges meeting at O are in adjacent quadrants. (b) The edges
meeting at O are in opposite quadrants.

obstacles ensures that a cell C; can be split into at most two disjoint regions; Figure 2 shows
two examples of this phenomenon. Next, we argue that covering a cell C; requires traveling
distance of at most 4D.

4.1 At Most Two Regions Per Cell

We prove that the C-obstacles create at most two regions per cell. We start by characterizing
the possible corners of an obstacle P and its corresponding C-obstacle P’. We assume the
corner of P’ is located at the origin, so that the environment splits naturally into four quadrants
of the plane which meet at the current corner. Moreover, we assume that the robot traverses
the boundary of P in a counter-clockwise fashion.

Recall that we construct C-obstacle P’ by taking the Minkowski sum of the obstacle P
with the translating D x D square robot. Horizontal and vertical edges are swept by an edge
of the robot. Other edges are swept by a single corner of the translating robot. The corners
of the original obstacle P can be convex (interior angle 0° < # < 180°) or concave (interior
angle 180° < # < 360°) . We show that the angle at a corner of a C-obstacle is never acute.

Lemma 1. The interior angle of a C-obstacle corner always satisfies 8 > 90°.

Proof. First, suppose that original corner O of obstacle P is concave. If the edges that meet
at O are in adjacent quadrants, then the corresponding corner of C-obstacle P’ is also concave
with the same angle (Figure 3(a)). Similarly, we obtain a matching concave corner of P’ when
the the edges are in opposite quadrants (Figure 3(b)). Next, suppose that the corner is convex.
If both of the edges of the original corner O of obstacle P are in the same quadrant, then the

11
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Figure 4: Convex corner of obstacle P (dark) and its corresponding corner in C-obstacle P’
(dark plus light). (a) The edges meeting at O are in the same quadrant. The boundary of
the C-obstacle has a right angle near O, where a vertical side and a horizontal side of length
D meet. (b) The edges meeting at O are in adjacent quadrants. The C-obstacle has a side of
length D/2 near O. (c) The edges meeting at O are in opposite quadrants.

angle must be acute. The C-obstacle P’ has three corners corresponding to O: one right angle
flanked by two obtuse angles (Figure 4(a)). If the edges are in adjacent quadrants (with an
acute, right or obtuse angle), then the C-obstacle has two obtuse corners corresponding to O
(Figure 4(b)). Finally, if the two edges are in opposite quadrants (so that the angle is obtuse),
then the C-obstacle has a matching obtuse corner (Figure 4(c)). O

Next, we confirm that a C-obstacle has guaranteed minimum vertical and horizontal
lengths.

Proposition 2. Consider any C-obstacle P' along with a point u on the boundary of P'. Let
£1 and ly be the vertical and horizontal lines through w, and for i = 1,2 let v; € ¢; be the
furthest point from u such that v NP’ #£ (). Then dist(u,v;) > D fori=1,2.

Proof. If ¢; passes through the original obstacle then there is a line segment s; of ¢; which
lies inside the obstacle. The line segment connecting u and v includes the segment s and its
Minkowski sum with the square robot, which extends the endpoints of s by at least D /2, so
dist(u,v) > D.

If ¢1 (resp. ¢3) does not pass through the original obstacle, then the point u must pass
through a vertical (resp. horizontal) edge of the C-obstacle P’. Such edges are only introduced
when the corner of the obstacle is one of types illustrated in Figure 4 (a) or (c), where the
robot sweeps the original corner with one of its sides of length D. O

Lemma 3. The C-obstacles split each grid cell into at most two regions.

Proof. Recall that a region is a maximal two-dimensional open set in the configuration space.
Suppose that C-obstacles P| and Pj touch within our grid cell, creating two disjoint regions.
Let u be a point on the boundary of both P| and Pj. By Proposition 2, each obstacle contains
both a vertical line segment and a horizontal line segment at u with length at least D, as
shown in Figure 5(a). If another C-obstacle @ touches P{ (resp. Pj), then Proposition 2 forces
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Figure 5: (a) P{ and Pj are C-obstacles that touch at point u, splitting the cell into two
regions. (b) If C-obstacle @ touches P| at point w, then the boundary must be horizontal and
shared with @, so there are still only two regions. A similar statement holds for point v. (c)
Two additional C-obstacles cannot meet at x since one or both would intersect an existing
C-obstacle.

@ to share a horizontal or vertical side with Pj (resp. Pj), so there are still only two regions
in the cell, as shown in Figure 5(b). Finally, we cannot have two additional objects touching
within a region because Proposition 2 forces one or both of those obstacles to intersect an
existing obstacle. O

4.2 Analysis of the Coverage Algorithm

In this section, we prove that the coverage algorithm guarantees complete coverage of Disk;.
We also establish the upper bound of the algorithm based on the distance traveled by the
robot.

We next find the bound for the cost of covering a cell. The small size of our D x D cell C
and the nature of our C-obstacles ensure that we can bound the distance traveled with 4D,
the perimeter of the cell. Observe that Proposition 2 guarantees that a C-obstacle P is at
least D x D, so it must extend beyond C.

Lemma 4. Let S be the connected piece of the boundary of the C-obstacle P that enters cell
C at point a = (a1,a2) and leaves cell C at point b = (by,b2). The length of S is at most
‘bl — al\ + ’bg — a2’.

Proof. Without loss of generality, assume that a; < b;. We claim that the boundary S is

1. a horizontal line segment if ao = bo,

2. a vertical line segment if a; = by,

w

. piecewise linear and monotone nonincreasing if a2 < b2, and
4. piecewise linear and monotone nondecreasing if ao > bo,

where “monotone” here also allows for vertical line segments. We can then use the corners of
P to partition S into line segments (as shown in Figure 6), and use the Pythagorean theorem
(repeatedly) to conclude that the length of S is at most |by — a1| + |b2 — az|.

13



A1A2 Al1A2

C-Obstacle
B1B2

(a)

Figure 6: (a) The C-obstacle boundary S between a = (a1, a2) and b = (b1, b2) (b) Repeated
use of the Pythagorean Theorem shows that the length of S is at most |by — a1| + |ba — aa.

We now prove our four-part claim. As shown in the proof of Lemma 1, the slopes of
the sides of the C-obstacle match the slopes of the original obstacle, except at the extreme
points, where we add a horizontal side and/or a vertical side. To change from negative slope
to positive slope (or vice versa) on a C-obstacle, we must encounter an extreme point of the
original obstacle. This creates a horizontal or vertical C-obstacle side of length at D between
them, as shown in Figure 4(a). Therefore, the second side is too far from the first side to
appear in the current cell. This proves claims 3 and 4.

By a similar argument, we cannot travel up one vertical side and down another (or right-
ward on one horizontal side and leftward on another), since such sides of a C-obstacle must
be separated by distance D. This proves claims 1 and 2. ]

Lemma 5. The cost (distance traveled) of covering a cell is T, < 4D.

Proof. Lemma 3 explains what a cell with multiple obstacles can look like. We cover the cell
using counter-clockwise boundary following (CCWBF). We alternately move along the cell
boundary and the boundary of a C-obstacle. Lemma 4 shows that following a C' obstacle from
cell boundary point a to cell boundary point b, the path we take is no longer than following
the (obstructed) counter-clockwise cell boundary from a to b instead. O

Theorem 6. The time to cover a Disk; is T; < 4N;D where N; denotes the number cells
inside Disk;.

Proof. From Lemma 5, we prove that the coverage cost of a cell is < 4D. Therefore, time to
cover a Disk; is bounded by 4N;D. Nj; is bounded by 7r% /D?. Placing N; into the bound for
the coverage time of Disk; gives T; < 4mr? /D. O

5 The Analysis of the SP, Algorithm

In this section, we analyze our algorithm’s performance to upper bound the expected distance
traveled by the robot. We only show the performance of robot-1 in our analysis. Due to the
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symmetric strategies, the performance of the robot-2 is the same.

To establish an upper bound on the rendezvous time, we divide the execution into two
stages. Suppose that the initial distance is d = r#+%, where r is the expansion radius and
0 <6 < 1. (We optimize the choice of expansion radius r in Theorem 7 below.) Stage-
1 consists of the early rounds 0 < i < k in which the moving robot(s) does not travel far
enough to meet the other robot. Stage-2 consists of the later rounds ¢ > (k 4+ 1). During
Stage-2, rendezvous will succeed the very first round in which one robot is active and the
other is waiting. The consistency of the Stage-2 rendezvous behavior allows us to compute the
expected distance traveled using an infinite sum. Finally, we note that the robots are agnostic
of the distinction between Stage-1 and Stage-2, since they do not know the initial distance d.

We now introduce the variables used in our analysis. Let R; be the event that the algorithm
is still active in round i. Assuming that R; holds, we define the following: A; is the event that
robot-1 is moving (executing C'A) in round i; B; is the event that robot-2 is moving (executing
CA) in round i. S; is the event that the robots successfully meet in round i. For i < k, we
have P[S;] = 0 because the robots do not travel far enough to meet. For i > k, we define
S; = (A; AB;) V (A; A B;). Note that this definition purposely omits the event that the robots
meet while both are on the move, but the probability of this event is zero, unless the initial
robot configuration obeys an exceptional geometry. The algorithm is always active in the first
round, thus P[Ry] = 1. The probability that the algorithm is still active in round ¢ is the joint
probability of the events that the robots do not meet in the rounds up to round ¢. That is,
P[R;] = P[So A --- A S;_1] for i > 0. Furthermore, we have

1 0<i<k,
Rl ={ b 505 @)

Equation (2) shows that the algorithm achieves rendezvous almost surely. Indeed, the proba-
bility that the robots have not met after i > k rounds is at most 27***_ which is exponentially
small. Furthermore, the expected number of rounds before rendezvous is upper bounded by
k+2.

We are now ready to study Algorithm 1. Next two sections present the analysis of stages
1 and 2 respectively. We prove the following bound on the algorithm’s distance competitive
ratio, and its time competitive ratio.

Theorem 7. The optimal expansion radius v of Algorithm 1 is r = 1.225. This choice of
r gives an algorithm that has a distance competitive ratio of 62.832%. The time competitive
ratio is twice this bound.

5.1 Analysis of Stage-1

We compute the expected distance traveled during round ¢ < k. The robots can not meet in
this stage since their displacement is at most 7* < %% Suppose that event A; holds: the
robot is moving in round i. Let D; denote the distance traveled in round ¢. Using Theorem 6,
the expected distance traveled in this stage is

E[D; | A;] <4N;D
42
- D
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We now compute the expected distance traveled in this stage.

Lemma 8. The expected distance traveled during Stage-1 is bounded by

k
2712
) 2
g E[Dz] <d 7(7“2 — 1).

=1

Proof. Since the robots to do not travel far enough to meet, every round up to k is performed.
In other words, P[R;]=1 for 0 < ¢ < k. Within a given round, the robot is active half of the
time. Using equation (3), we find that the expected distance traveled satisfies

k k k

S E[D] = Y E[DARIPIR] = 5 > EIDi|A]

1=0 1=0 =0

which is maximized for § = 0. O

5.2 Analysis of Stage-2

In this section, we consider rounds ¢ > (k + 1). We separately calculate the expected distance
traveled during unsuccessful rounds and the expected distance traveled in the (final) successful
round.

Lemma 9. The expected total distance traveled during unsuccessful Stage-2 rounds is bounded
by

o 2

. ) r
’ZIE[DZ]S,] <d DICEra
i=k+1

Proof. We bound the expected distance traveled by robot-1; the calculation for robot-2 is anal-
ogous. Assuming that the algorithm is active in round 4, we know that the robots rendezvous
precisely when S; = (A4; AB;)V (A; A B;) occurs. Furthermore, the distance traveled by robot-1
is nonzero only when A; holds. This means that E[D; | S; A R;] = E[D; | A; A B; A R;], and

Using equations (2) and (3), we find that the total expected distance traveled in unsuc-
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cessful Stage-2 rounds is

Z E[DZ | A; N B; A R,‘]]P’[Ai A B; A RZ‘]
i=k+1

EE0

i=k+1

T — ; 1\’
- Z p20+k+1) [
D = 2

B 7rr2k+2i 7;2 J
2D 2

§=0
2 o220
- D(2-r2)
which is maximized for § = 0. O

Lemma 10. The expected distance traveled during the successful round is bounded by

] 6. < 22'
i=k+1

Proof. We have S; = (A; A B;) V (A; A B;), and only the event A; A B; contributes to the
distance traveled by robot-1. In a successful round, robot-1 covers a circular area with radius
r#+9 before discovering robot-2. The total distance traveled by robot-1 is calculated similarly
to equation (3), using r* = r*+% = d. Independent of i, we have

2

Therefore, the expected distance traveled in successful rounds during Stage-2 is

Z E[DZ ’ A; A Ez A RZ]P[Al /\Ei A Rz]
i=k+1

drd? L /1R
-5 2 (3)

i=k+1

=3
D

5.3 Computing the Competitive Ratio

Having found bounds for the expected distance traveled in both stages, we are ready to cal-
culate the distance competitive ratio of our algorithm.
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Proof of Theorem 7. The expected distance traveled is the sum of the bounds in Lemmas
8, 9 and 10. In the best offline case, the robots are omniscient and their initial locations are
within unobstructed line of sight of each other. Then, they would travel d/2 distance toward
each other to meet. Therefore, to obtain competitive ratio, we divide the expected distance
traveled by d/2, which yields

472 2712 2w
d d d—
prZ—1) D= "D

The ©(d) dominates this expression for large d, so we choose our r value to minimize the
coefficient of d. The best value is r = /1.5 ~ 1.225, giving the distance competitive ratio of
62.8324.

The analysis for the time competitive ratio is analogous to the distance calculations. In
each round, a robot is inactive with probability 1/2. In this case, the robot wait time in round
i is identical to the time for an active robot to complete the round (since the robots move unit
distance in unit time). Therefore, doubling the bounds in each of the three lemmas gives a
bound on the expected time until completion. Of course, optimal r = /1.5 ~ 1.225 is same
for the time competitive ratio.

O

6 Multi-Robot Symmetric Rendezvous in Planar Environ-
ments

In this section, we extend the strategy SP, from two robots to n > 2 robots. In the modified
strategy MSP,, each robot decides its action in round ¢ by flipping a weighted coin. With
probability 1/n, the robot moves, otherwise it remains stationary. We analyze the performance
of MSP, by finding an upper bound on the expected distance traveled by the robot.

Two robots meet when their D x D squares touch one another. For our analysis, we consider
only the rendezvous cases where one robot is moving and the other one is waiting. We also
assume that when two robots meet, they have access to coordination mechanisms which allow
them to ”stick together”, that is move as a single robot. This requires communication and low
level coordination about the robot’s motion.

We first develop a lower bound for the best offline solution for the multi-robot case. Let C
be the circle with the smallest possible radius that encloses all the robots in the environment
A. This classic optimization problem, known as the smallest-circle problem and the 1-center
problem, can be solved in linear time [76]. The best meeting point is the center of C. Recall
that we define the distance d to be the maximal pairwise distance between the robots. The
distance that one robot must travel to reach the center of C' is at most d/2. Therefore, we will
calculate our algorithm’s distance competitive performance with respect to d/2.

As in the two-robot case, our analysis divides the execution of our multi-robot strategy
into two stages. Suppose that the maximum initial pairwise distance is d = ¥ where r is
the expansion radius and 0 < § < 1. Stage-1 consists of the early rounds 0 < ¢ < k in which
the moving robot(s) does not travel far enough to meet all the other robots. In calculating
our upper bound, we choose to ignore any pairwise rendezvous in Stage 1. Stage-2 consists of

18



the later rounds ¢ > (k + 1). During Stage-2, rendezvous will succeed the very first round in
which exactly one robot is active.

We now introduce the variables used in our analysis. We restrict our analysis to a single
robot; the same analysis holds for the others by symmetry. For i > k+1, we define our (proxy)
success event S; as we did in Section 5. Namely, S; corresponds to the event that exactly one
robot is moving in round ¢ > k + 1. Let A; be the event that the robot is moving in round 4,
so that P[A;] = 1/n. Assuming that the round is active, the probability of event S; is

S s R s

for large n, where e &= 2.71828 is the base of the natural logarithm. The probability of event
gi is

P[Si|=1-P[S]~1-1/e. (5)

_ Recall that R; is the event that the algorithm is still active in round i. That is, P[R;] =
P[So A -+ A S;_1] for i > 0. Since the robots only meet when event S; occurs, P[R;] is,

0<i<k

1 — — ?
PIR] = { PE ket 0

As in the two-robot case, the probability that rendezvous has not occurred after round 7 > k
decays exponentially. The expected number of rounds prior to rendezvous is upper bounded
by k+e<k+3.

6.1 Analysis of Stage-1

In this section, we compute the expected distance traveled by the robot for round 7 < k. A

moving robot can not meet all the other robots in this stage, since its displacement is at most
k k+90
rr <P,

Lemma 11. The expected distance traveled by the robot during Stage-1 is bounded by

k
47r?

;E[Di] <A R

Proof. We have P[R;]=1 for 0 < i < k because in these early rounds, a moving robot does not
travel far enough to encounter every other robot. If a robot decides to move in round ¢, then
it executes Algorithm CA. Therefore, using Theorem 6, the expected distance traveled by a
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robot in this stage satisfies

k k k
1
> E[D;] =) E[Di|AJP[A;] = = > E[D;|A;]
=0 1=0 1=0
2% k
1 4rt _ 4i 2
n = D  nD —
Ay 2k+2
nD (r2 —1)
Amp2—20
d? 7
<UD (r2 —1)’ (7)
which is maximized for § = 0. O

6.2 Analysis of Stage-2

In this section, we consider rounds 7 > (k + 1), in which the robots meet with nonzero
probability.

Lemma 12. The expected total distance traveled in Stage-2 is bounded by

47T7"2P [?l]
nD(1—7r2P[S;])

Y E[D;|S] <d?
i=k+1

Proof. Recall that S5; is the event that exactly one robot is active in the current round. For
i > k, we have P[R;] = P[S;]""*, where P[S;] is given in equation (4). Furthermore, the distance
traveled by the robot in round ¢ is nonzero only when A; holds. This means that the total
expected distance traveled by the robot in Stage-2 satisfies

o (e ¢}
> E[Di] = Y E[D;|A; ARP[A;|R]P[R].
i=k+1 i=k+1
= 4rr? 1 ink AT = i—k
I R DY)
i=k+1 i=k+1
AT = o iv1 Arr? DRG] & i
_ — 3 T2( +k+1)P F@] _ — ;;(TQ]P) Bl])

Y2k [?Z] i A2 20p BZ]
nD(1 — 2P [S;]) D1 —r2P [Si])’

which is maximized for § = 0. O
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6.3 Computing the Distance Competitive Ratio

Having found bounds for the expected distance traveled in both stages, we are ready to cal-
culate the distance competitive ratio of our algorithm.

Theorem 13. The best choice for the expansion radius is v = 1.12 which gives a distance
competitive ratio of 220.151d/(nD), where d is the mazimal distance between the robots, n is
the number of robots, and D 1is the side length of a square robot.

Proof of Theorem 13. The expected distance traveled is the sum of the bounds in Lem-
mas 11 and 12. To obtain competitive ratio, we divide this sum by d/2, obtaining

87rdr2< 1 P [Si] )

nD T2—1+1—7‘2]P’ [Si]

where P[S;] ~ 1 — 1/e by equation (5). The value r = 1.12 minimizes this expression, giving
a distance competitive ratio of O (d/(nD)). O

The analysis for the time competitive ratio is analogous to the distance calculations. The
time competitive ratio is n times the distance competitive ratio, and r = 1.12 is the optimal
expansion radius for both.

7 Simulation Experiments

In this section, we explore the results of Theorems 6, 7 and 13 in simulations. We verify the
bounds obtained in these theorems, test the performance and show the execution of Algorithms
SP,, MSP, and CA in real world environments.

Simulation experiments are conducted in the ROS platform [77]. Robots are equipped
with Hokuyo laser sensors. We executed Algorithms SP, and MSP, in three different indoor
environments populated with obstacles. All of the simulation experiments were run with
the following parameters: the size of each grid cell is D = 0.6m; the size of the square
robot is D x D = 0.6m x 0.6m; robot speed is 0.25m/sec; and the expansion radius value is
r = 1.12. The maximum grid size G4, for full coverage of Environment-1, Environment-2 and
Environment-3 are respectively 19m x 19m, 18m x 18m and 17m x 17m. The paths (corridors)
that would lead the robot to the small rooms in the environments are blocked. These blocked
areas appear dotted and gray colored in the figures.

Figure 7(b) shows the sample environments and the paths followed by the robot executing
CA. The initial location I; of the robot in Environment-j is shown by a (red colored) square,
for j € [1,3]. Note that the robot cannot enter the corridors or rooms with very narrow
openings due to its size and the minimum distance it keeps from an obstacle, which is set to
0.6m.

Let 7; denote the first round that the robot’s disk encircles Environment-j. In another set
of experiments, we assume that the robot flipped a head, and hence executed C'A, in all rounds
0 < < ij. The left plot in Figure 8 shows the coverage time in terms of the simulation time,
and and the right plot shows the number of steps of C A with respect to changes in grid size.
Grid size here represents the area that lays in Disk; with radius r;, which increases as round
1 increases. The results show that Environment-1 has the longest coverage time for all grid
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sizes. As expected, both the number of steps and the simulation time increase as the grid size
increases. The results verify the upper bound of C'A Algorithm we obtained in Theorem 6. In
the trial executions of C'A in each environment, the robot accomplished full coverage. Note
that the coverage time is constant for the environment that has G4, exceeding the grid size
that appears in the x-axis.

In Figures 7(a) and 9, we report the results of trial executions of SP, and MSP, in
Environment-1. We varied n between 4 and 64 and d between 4 and 24. For each n and d
combination, we performed 10000 trials. Arbitrary initial positions are assigned to the robots
for each environment such that the maximum initial distance between two robots is d. The
initial locations of the robots are the same for each trial. The top plot in Figure 7(a) shows
the average distance traveled (as number of steps) for rendezvous with respect to the change
in d. The middle plot in Figure 7(a) shows the average distance traveled (as number of steps)
for rendezvous with respect to the change in n. Not surprisingly, the average number of steps
increases as d increases, while the average number of steps per robot shows less variation as n
increases. The bottom plot shows that the average competitive ratio remains constant as both
n and d change when r = 1.12. Finally, Figure 9 shows the average number of rounds and
the standard deviation in the average number of steps, each plotted against maximum initial
distance d.

8 Future Work

In this paper, we studied the symmetric rendezvous search problem in planar environments
with obstacles. We presented a randomized rendezvous strategy for two robots and extended
our strategy to multiple robots. We proved that the competitive ratio of our strategy is O(d/D)
for two robots, where d is the initial distance between the robots and D is the side length of the
square robots. For n robots, we showed that its competitive ratio is O(d/(nD)), where d is the
maximal pairwise distance between the robots. In addition to the rendezvous algorithm, we
proposed a coverage algorithm that provides complete coverage of an unknown environment.
Finally, we presented the results of various simulations in different environments.

An interesting future research direction is to study rendezvous search in three dimensional
environments such as buildings with multiple floors or underwater scenarios. Other avenues of
research include instances with communication constraints (e.g., the robots can communicate
once they are within a given range) and problems involving heterogeneous teams (e.g., ground
and aerial vehicles).
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Figure 7: (a) TOP: Average number of steps until rendezvous for various d values with respect
to changes in n. MIDDLE: Average number of steps until rendezvous for various n values with
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various d values with respect to changes in n. (b) Sample environments and the paths followed
by a robot to cover the environments. Red square shows the initial location of the robot in the
environment. TOP: Environment-1. MIDDLE: Environment-2. BOTTOM: Environment-3.
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