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PRODUCT RULE WINS A COMPETITIVE GAME

ANDREW BEVERIDGE, TOM BOHMAN, ALAN FRIEZE, AND OLEG PIKHURKO

Abstract. We consider a game that can be viewed as a random graph process.
The game has two players and begins with the empty graph on vertex set [n].
During each turn a pair of random edges is generated and one of the players
chooses one of these edges to be an edge in the graph. Thus the players guide
the evolution of the graph as the game is played. One player controls the even
rounds with the goal of creating a so-called giant component as quickly as
possible. The other player controls the odd rounds and has the goal of keeping
the giant from forming for as long as possible. We show that the product rule
is an asymptotically optimal strategy for both players.

1. Introduction

Consider the following random graph game. There are two players, Creator and
Destroyer, and the game is played on vertex set [n]. The game begins with the
empty graph, which we denote G0. The game is played in a sequence of turns that
alternate between Creator and Destroyer. During turn i a pair of random edges
ei, fi is generated and the player who controls round i chooses one of these edges
to be an edge in the graph, adding it to Gi−1 to form the graph Gi. We define
a giant component to be any connected component with at least n/ log n vertices.
(A giant component is usually defined as a component with Ω(n) vertices. We
choose a threshold of n/ log n here in order to define the game without reference to
asymptotics in n. When we state our formal results, we will take n → ∞, and it will
turn out that our choice here is somewhat arbitrary.) Creator’s goal is to achieve
the formation of a giant component in Gi as quickly as possible while Destroyer’s
goal is to keep a giant from forming for as long as possible. One way to measure the
success of the players is to compare with the phase transition in the Erdős-Rényi
random graph; that is, we might say that if Gcn has a giant where c is a constant
less than 1/2 then Creator wins and if Gcn does not have a giant where is a c is a
constant greater than 1/2 then Destroyer wins.

If we fix the strategies for the two players then this game gives us an example of
an Achlioptas process, a random graph process in which we choose one edge from
each pair in a sequence e1, f1; e2, f2; . . . of pairs of random edges where the choices
are determined by some fixed algorithm and are made on-line. For discussion
of Achlioptas processes and results on the timing of the emergence of the giant
component in these and related models see [1], [2], [3], [4], [5] and [7].
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Let G be a fixed graph with connected components C1, . . . , Cr. We define the
susceptibility of G to be

X(G) =
1

n

r
∑

i=1

|Ci|
2

where |Ci| is the number of vertices in component Ci. Note that the susceptibility
gives the expected number vertices in the connected component containing a vertex
chosen uniformly at random. This parameter plays an important role in percolation
theory. Motivated (in part) by this connection, Spencer introduced the product

rule, which is the Achlioptas process that chooses the edge that minimizes the
change in the susceptibility [6]. Note that the change in the susceptibility when we
add to G an edge e that connects distinct components Ci and Cj is (2 · |Ci| · |Cj |)/n.
Thus to minimize the increase in the susceptibility we choose the edge from the
pair ei, fi that minimizes the product of the sizes of the components joined. This
(together with an arbitrary convention for breaking ties and dealing with edges
that fall within a single component) defines the product rule. It is believed that
the product rule is a nearly optimal Achlioptas process with respect to delaying the
appearance of the giant component for as long as possible (for discussion of this
issue and some examples of Achlioptas processes that appear to do slightly better
than the product rule see [7]). Very little is known about the graph evolution given
by the product rule; for example, the timing and nature of the appearance of a
giant component in the product rule are intriguing open issues.

In order to state our results on the game defined above, we must make a dis-
tinction between the product rule that maximizes the change in the susceptibility
and the product rule as defined above, which minimizes the change in susceptibil-
ity. Suppose ei, fi is a pair of random edges and Gi−1 is a fixed graph. Suppose
further that ei connects components in Gi−1 consisting of a and b vertices, respec-
tively, while fi connects components consisting of c and d vertices, respectively.
Destroyer’s product rule is defined by

(1.1) Destroyer’s product rule chooses

{

ei if ab < cd

fi if ab > cd.

(Note that Destroyer’s product rule is identical to the product rule defined above.)
Analogously, we define Creator’s product rule by stipulating that

(1.2) Creator’s product rule chooses

{

fi if ab < cd

ei if ab > cd.

For both of these rules ties (i.e. ab = cd) and edges that fall within a single
component are handled arbitrarily. We assume throughout that edges are chosen
uniformly and independently at random from [n]2. Of course, this convention will
lead to the appearance of loops and multiple edges in our process. As the number of
these is bounded by, say, log n whp, they can be removed from the process without
altering our results.

Theorem 1.1. Let Gi be the graph produced through i rounds of our competitive

game.

(a) If Destroyer employs Destroyer’s product rule and c < 1/2 then whp the

largest component of Gcn has O(log n) vertices.
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(b) If Creator employs Creator’s product rule and c > 1/2 then whp the largest

component of Gcn has Ω(n) vertices.

We prove this theorem by applying techniques developed by Spencer and Wormald
in a proof that the evolution of the susceptibility determines the timing of the
phase transition for a certain natural class of Achlioptas processes. (This result
was independently proved by Bohman and Kravitz [4], and the methods developed
in [4] can also be used to prove Theorem 1.1. However, the bound on the component
sizes in part (a) would not be as strong, so we opt for the methods of Spencer and
Wormald here.)

Suppose we measure success in our competitive game relative to the Erdős-Rényi
phase transition. Our methods can be used to show not only that the product rule
does not lose the game (as we saw in Theorem 1.1) but also that the product rule
wins when the other player uses a strategy that varies significantly from the product
rule.

Theorem 1.2. Let Gi be the graph produced through i rounds of our competitive

game. Let the random variables Ai and Bi be the number of times Creator and

Destroyer, respectively, do not follow their respective product rules during the first

i turns of the game. Let ǫ > 0 be a constant.

(a) If Destroyer employs Destroyer’s product rule and Creator uses a rule for

which An/2 > ǫn whp then there exists a constant c > 1/2 such that whp

the largest component of Gcn has O(log n) vertices.

(b) If Creator employs Creator’s product rule and Destroyer uses a rule for

which Bn/2 > ǫn whp then there exists a constant c < 1/2 such that whp

the largest component of Gcn has Ω(n) vertices.

Theorem 1.2 implies, for example, that the phase transition for the product rule
(i.e. we apply Destroyer’s product rule in every round) occurs after (1/2 + δ)n
edges for some fixed δ > 0. Furthermore, Theorem 1.2 can be used to analyze the
following variation on Achlioptas processes. Suppose that there is one player who
simultaneously builds two graphs G and H on the same vertex set. As before, two
random edges arrive in each round. The player has to decide on-line which edge
is added to G, while the other edge goes to H. The objective of the player is to
control the birth of the giant in both graphs; for example, to delay it in G and to
create it in H. It follows from Theorem 1.2 that whp the player can strictly beat
the Erdős-Rényi threshold in both graphs. In the example given, the player uses
Destroyer’s product rule with respect to G in odd rounds and Creator’s product
rule with respect to H in even rounds. To see that ‘mistakes’ are made (by an
imaginary opponent) in the formation of both G and H, consider the set of vertices
X that are isolated in both G and in H and the set of vertices Y that are isolated
in neither G nor H. Both X and Y are a positive proportion of the vertices from,
say, step n/100 until step n/2. Therefore, there will be a positive proportion of
rounds when ei lies in X and fi lies in Y . In such rounds the player is making the
correct choice in both graphs.

2. Preliminaries

We begin with some background (taken from [6] and [7]). The starting point
for our analysis is a differential equation that describes the evolution of the suscep-
tibility in the Erdős-Rényi random graph. Suppose G is a fixed graph on vertex
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set [n] with connected components C1, . . . , Cr. Let e be a random edge, and set
G+ = G + e. If e connects components Ci and Cj then the change in the suscepti-
bility is (2 · |Ci| · |Cj |)/n. Thus

(2.1) E[X(G+) − X(G)] =
∑

i 6=j

|Ci||Cj |

n2

2|Ci||Cj |

n

=
2

n

(

r
∑

i=1

|Ci|
2

n

)2

− 2

r
∑

i=1

|Ci|
4

n3
=

2X2(G)

n
− 2

r
∑

i=1

|Ci|
4

n3
.

Since the sum of the fourth powers of the component sizes divided by n3 is negligible
when all components are small, we expect the susceptibility of the Erdős-Rényi
random graph Gn,cn to be concentrated around f(c) where f is the solution to the
differential equation

f ′ = 2f2 f(0) = 1.

Note that

f(x) =
1

1 − 2x
.

This gives a nice explanation for the fact that the giant component suddenly appears
in the Erdős-Rényi graph when there are about n/2 random edges. (I.e. at about
n/2 random edges the susceptibility blows up and this should reflect a dramatic
change in the component structure.) Of course, this is a formal proof of neither the
concentration of the susceptibility around this trajectory nor the sudden emergence
of the giant. See Bohman and Kravitz [4] or Spencer and Wormald [7] for proper
developments along these lines.

A key piece of the Spencer and Wormald proof is the following definition and
Theorem. For a vertex v of graph G we let Cv be the connected component of G
that contains v. We say that G has a K, α component tail if

1

n
|{v : |Cv| ≥ s}| ≤ Ke−αs for all s.

Note that if G has a K, α component tail and αα′ > 1 then

max
v

|Cv| < α′ log n

for n sufficiently large. The random graph Gn,p is the random graph on vertex set
[n] in which each of the

(

n
2

)

possible edges appears independently with probability
p.

Theorem 2.1 (Spencer, Wormald). Let L, K, α > 0 be constants. Let G be a graph

on n vertices with a K, α component tail . Let H be the random graph H = Gn,d/n

where d is a fixed constant. Set G+ = G ∪ H.

(a) If dL < 1 and X(G) < L then there exist K+, α+ such that whp G+ has

a K+, α+ component tail.

(b) If dL > 1 and X(G) > L then whp G+ has a component with Ω(n) vertices.

3. Proof of Theorem 1.1

Our key observation is that if the product rule is employed (by either player)
then the expected change in the susceptibility in two turns of the game is bounded
by the expected change in the susceptibility of the Erdős-Rényi random graph when
two random edges are added.
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Lemma 3.1. Let G be a fixed graph on vertex set [n] with components C1, . . . , Cr.

Let e1, f1, e2, f2 ∈ [n]2 be independent random edges. If G+ = G + {a, b} where

a ∈ {e1, f1} is chosen according to Destroyer’s product rule and b ∈ {e2, f2} is

chosen arbitrarily then

E[X(G+)] ≤ X(G) +
4

n
X2(G) +

32

n2
X3(G)

Proof. For each edge e ∈ [n]2 set ∆e = 2 · |C1| · |C2| if e joins distinct components
C1, C2 of G and set ∆e = 0 if e lies within a connected component. For each positive
integer m let pm be the probability that ∆e ≥ m where e ∈ [n]2 is a random edge.
We have

E[∆a] =
∑

m≥1

Pr(∆e1
≥ m and ∆f1

≥ m) =
∑

m≥1

p2
m

E[∆b] ≤
∑

m≥1

Pr(∆e2
≥ m or ∆f2

≥ m) =
∑

m≥1

(

2pm − p2
m

)

Note that E[X(G+) − X(G)] may be larger than (E[∆a] + E[∆b])/n as we must
account for the possibility that a and b intersect a common component of G. When
this happens the additional contribution to E[X(G+) − X(G)] is 2 · |Ca| · |Cb|/n
where Ca is the component of G that intersects a but not b and Cb is the component
of G that intersects b but not a. If we fix the components Ca and Cb there are 4
vertices among the edges e1, f1 that could fall in Ca and 4 vertices among the edges
e2, f2 that could fall in Cb. Therefore, apply (2.1) we have

E[X(G+) − X(G)] ≤
E[∆a]

n
+

E[∆b]

n

+ 16
∑

i 6=j

[

|Ci|

n

(

∑

k

|Ck|
2

n2

)

|Cj |

n

]

2 · |Ci| · |Cj |

n

≤
1

n

∑

m≥1

(

p2
m + 2pm − p2

m

)

+
32

n2

∑

k

|Ck|
2

n

∑

i,j

|Ci|
2|Cj |

2

n2

=
2

n

∑

m≥1

pm +
32X3(G)

n2

≤
4

n

(

1

n

r
∑

i=1

|Ci|
2

)2

+
32X3(G)

n2

Note that we apply (2.1), dropping the sum of the fourth powers of the component
sizes (as we are establishing an upper bound). �

Lemma 3.2. Let G be a fixed graph on vertex set [n] with components C1, . . . , Cr.

Let e1, f1, e2, f2 ∈ [n]2 be independent random edges. If G+ = G + {a, b} where

a ∈ {e1, f1} is chosen according to Creator’s product rule and b ∈ {e2, f2} is chosen

arbitrarily then

E[X(G+)] ≥ X(G) +
4

n
X2(G) −

4

n3

r
∑

i=1

|Ci|
4 −

16

n5

(

r
∑

i=1

|Ci|
3

)2

.
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Proof. We follow the proof of Lemma 3.1, noting that here we must account for
the possibility that edges a and b join the same pair of components from G. The
probability that one of the edges e1, f1 joins components Ci and Cj is at most
4|Ci||Cj |

n2 . Therefore, we have

E[X(G+) − X(G)] ≥
E[∆a]

n
+

E[∆b]

n
−
∑

i<j

(

4|Ci||Cj |

n2

)2
2|Ci||Cj |

n
.

Now we apply (2.1) to achieve the stated bound, noting that here we cannot drop
the sum of fourth powers of the component sizes as we are establishing a lower
bound. �

We are now ready to apply the so-called differential equations method.

3.1. Destroyer. Let c < 1/2 be a constant and assume that Destroyer employs
Destroyer’s product rule. We start by defining some constants. Let β be a constant
such that

(3.1) c + β <
1

2
.

Let η be a constant such that

(3.2) 4ηf (c + β) =
4η

1 − 2(c + β)
< 1.

Let 0 = c0 < c1 < c2 < · · · < cN = c be constants that satisfy

(3.3) |ci+1 − ci| < η for i = 0, . . . , N − 1.

We view these ci’s as landmarks in the process, and we show that whp at each of
these landmarks our graph is very well behaved. To be precise, we will show that
whp we have

(i) Gcin has a Ki, αi component tail (where Ki and αi are constants), and

(ii) X(Gcin) ≤ f
(

ci + iβ
N

)

= 1

1−2(ci+
iβ
N )

for i = 1, . . . , N . To establish these conditions, we go by induction on i.
Assume Gcin satisfies (i) and (ii). First, we establish (i) for Gci+1n. Let H be

the graph on vertex set [n] with edge set

{ek : cin < k ≤ ci+1n} ∪ {fk : cin < k ≤ ci+1n}.

Since Gcin satisfies (ii), we have (applying (3.2))

X(Gcin)4η ≤ 4ηf

(

ci +
iβ

N

)

≤ 4ηf(c + β) < 1.

It then follows from part (a) of Theorem 2.1 that there exist constants Ki+1, αi+1

such that whp Gcin + Gn,4η/n has a Ki+1, αi+1 component tail. Since, using
standard techniques, the number of edges in Gn,4η/n is concentrated around 2ηn
and we have (3.3), it follows that Gcin + H has a Ki+1, αi+1 component tail whp.
Since Gci+1n is contained in Gcin + H, the graph Gci+1n also has a Ki+1, αi+1

component tail whp.
The proof that Gci+1n satisfies (ii) is more delicate and requires the assumption

that Gci+1n satisfies (i) whp (as we have already established). We apply the so-
called differential equations method for random graph process to the susceptibility
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(for an excellent reference for this method see [8]). Set K = ci+1n−cin
2

. For k =
0, . . . , K set

Xk = X(Gcin+2k).

For k = 0, . . . , K set

Yk = Xk − f

(

ci +
(i + 1)β

N
+

2k

n

)

.

We have

Y0 = X0 − f

(

ci +
(i + 1)β

N

)

≤ f

(

ci +
iβ

N

)

− f

(

ci +
(i + 1)β

N

)

< −γ < 0.

(Note that this inequality defines γ.) Our aim is to show that {Yi} is a supermartin-
gale with bounded differences. To achieve this, we apply the standard technique of
introducing a stopping time. Let T be the smallest index k such that

• Gcin+2k has a component with more than α′ log n vertices (where α′αi+1 >
1), or

• Yk ≥ −γ/2.

Finally, let Zk = Ymin{k,T}.

Lemma 3.3. If n is sufficiently large then the sequence {Zi} is a supermartingale.

Proof. If k ≥ T then we (deterministically) have Zk+1 = Zk.
Suppose k < T . It follows that Yk < −γ/2. Let Fk be the filtration of our

probability space given by the set of edges generated through the first k turns of
the game. Applying Lemma 3.1 and the convexity of f we have

E[Zk+1 − Zk|Fk] = E[Yk+1 − Yk|Fk]

= E[Xk+1 − Xk|Fk]

−

[

f

(

ci +
(i + 1)β

N
+

2k + 2

n

)

− f

(

ci +
(i + 1)β

N
+

2k

n

)]

≤
4

n
X2

k +
32

n2
X3

k −
2

n
f ′

(

ci +
(i + 1)β

N
+

2k

n

)

≤
4

n

[

f

(

ci +
(i + 1)β

N
+

2k

n

)

−
γ

2

]2

+
32

n2
X3

k

−
2

n
f ′

(

ci +
(i + 1)β

N
+

2k

n

)

=
1

n

[

γ2 +
32

n
X3

k − 4γf

(

ci +
(i + 1)β

N
+

2k

n

)]

≤ 0

for n sufficiently large. �

Lemma 3.4. For k = 0, . . . , K we have

|Zk+1 − Zk| ≤
6(α′)2(log n)2

n
.

Proof. If k ≥ T then we trivially have Zk+1 = Zk. If k < T then the largest
components in Gcin+2k has at most α′ log n vertices. The maximum change in the
susceptibility when we add two edges to such a graph is 6(α′)2 log2 n/n. �
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We have

Pr

(

X(Gci+1n) > f

(

ci+1 +
(i + 1)β

N

))

≤ Pr (T ≤ K)

≤ Pr (ZK ≥ −γ/2) + Pr
(

Gci+1n does not have Ki+1, αi+1 component tail
)

.

The second probability here is o(1) as we noted above. We apply an Azuma-
Hoeffding type inequality (see for example Lemma 4.2 of [8]) to bound the first
probability (using Lemmas 3.3 and 3.4). To be precise,

Pr (ZK − Z0 ≥ γ/2) ≤ exp

{

−
γ2n

72(α′)4(log n)4

}

.

Thus (ii) holds whp.

3.2. Creator. Here we follow the analysis of the previous section to get to a point
where the susceptibility is large, and then we apply Theorem 2.1, part (b).

Let c > 1/2 be a constant. Let ν = c − 1/2. Choose τ such that

(3.4) f(τ )ν
e−8

4
> 1.

Let β > 0 be a constant such that τ + β < 1/2. Choose η such that

(3.5) 4ηf(τ + β) < 1.

Let 0 = c0 < c1 < c2 < · · · < cN = τ + β be constants such that

|ci+1 − ci| ≤ η for i = 0, . . . , N − 1.

Now we define a sequence of times in our process. For i = 0, . . . , N let Ti be the
smallest value of k for which

(3.6) X(Gk) ≥ f

(

ci −
iβ

N

)

.

We show that whp we have

(i) GTi
has a Ki, αi component tail (where Ki and αi are constants), and

(ii) Ti ≤ cin

for i = 1, . . . , N .
We go by induction on i as in the previous subsection. Suppose Ti satisfies

conditions (i) and (ii). Note that condition (i) and the definition of Ti (given in
(3.6)) imply

X (GTi
) = f

(

ci −
iβ

N

)

+ o(1).

We consider the 2K = (ci+1− ci)n turns that follow turn Ti. As there are less than
2ηn random edges generated during these turns, it follows from (3.5) and part (a) of
Theorem 2.1 that whp GTi+2K has a Ki+1, αi+1 component tail for some constants
Ki+1, αi+1. For k = 0, . . . , K set

Yk = X (GTi+2k) − f

(

ci −
(i + 1)β

N
+

2k

n

)

.

Note that Y0 > γ for a constant γ > 0. Let the stopping time T be the smallest index
k such that GTi+2k has a component with more than α′ log n vertices or Yk < γ/2.
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This yields a submartingale with bounded differences. By an application of the
Azuma-Hoeffding inequality, whp we have

X (GTi+2K) > f

(

ci+1 −
(i + 1)β

N

)

.

Conditions (i) and (ii) on Ti+1 follow.
Now suppose TN satisfies conditions (i) and (ii). The graph GTN

has a KN , αN

component tail and TN/n < cN = τ + β. We consider the νn turns after turn TN .
For Creator’s turn k during this interval, the edge chosen is a purely random edge
whenever ek is isolated. (This assertion would follow from the assumption that
Creator’s product rule imposes the tie-breaking convention that fk is chosen when
ek is isolated. Alternately, we could focus only on rounds where one edge is isolated
and the other is not. For the sake of brevity we omit this detail). The number of
vertices that do not appear in the set of edges

{ek : 1 ≤ k ≤ n} ∪ {fk : 1 ≤ k ≤ n}

is concentrated around ne−4. We conclude that during the νn turns after turn TN

whp at least e−8νn/4 purely random edges are added to the graph G. It follows
from Theorem 2.1 part (b) and (3.4) that GTN+νn has a component with Ω(n)
vertices whp.

4. Product Rule Wins (Proof of Theorem 1.2)

In Section 3.1 we saw that, under the assumption that Destroyer uses Destroyer’s
product rule, the susceptibility is bounded above by the trajectory f that describes
the evolution of the susceptibility for the Erdős-Rényi random graph. If we add
the assumption that Creator makes many mistakes (relative to the product rule)
then we can adapt our argument to show that there are constants c < 1/2 and
δ > 0 such that whp the susceptibility of Gcn is bounded by f(c − δ). Since the
argument that bounds the progress of the susceptibility does not depend on the
number of edges in the graph, any ground that Creator loses (relative to f) cannot
be regained. This gives the proof of part (a) of Theorem 1.2. We now sketch the
details. The proof of part (b) of Theorem 1.2 follows along similar lines.

Let δ, β > 0 be constants such that

f

(

1

2
−

ǫ

2
− δ

)

= f

(

1

2
−

ǫ

2
+ β

)

−
ǫ

2
.

Let η > 0 be chosen such that

4ηf

(

1

2
−

ǫ

2
+ β

)

< 1.

Let 0 = c0 < c1 < c2 < · · · < cN = 1/2 − ǫ/2 be constants that satisfy

|ci+1 − ci| < η for i = 0, . . . , N − 1.

We follow the argument of Section 3.1 to show that the susceptibility is bounded
at each of the landmarks. However, instead of working with Xk = X (Gcin+2k), we
consider

X ′
k = X (Gcin+2k) +

Acin+2k

n
.

If we consider two turns of the game and condition on the event that Creator makes
a mistake relative to the product rule then the expected change in the susceptibility
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is bounded above by the expression given in Lemma 3.1 minus 2/n. It follows that
we can apply the argument in Section 3.1 directly to X ′ to show that we have

X ′ (Gcin) < f

(

ci +
βi

N

)

for i = 1, . . . , N.

So, we have

X
(

Gn/2−ǫn/2

)

= X (GcN n) = X ′ (GcN n) −
AcN n

n
≤ f (cN + β) −

ǫ

2

= f

(

1

2
−

ǫ

2
+ β

)

−
ǫ

2
= f

(

1

2
−

ǫ

2
− δ

)

.

Now let η′ > 0 satisfy

4η′f

(

1

2
−

δ

4

)

< 1.

We consider landmarks cN < cN+1 < cN+2 < · · · < cM = 1/2 + δ/4 which satisfy

|ci+1 − ci| < η′ for i = N, . . . , M − 1.

Following the machinery of Section 3.1 we see that Gcin has a Ki, αi component
tail and

X (Gcin) < f

(

ci − δ +
δ(i − N)

2(M − N)

)

for i = N + 1, . . . , M . This completes our sketch of the proof of part (a) of Theo-
rem 1.2.
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