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Abstract

An (r, b)-graph is a graph that contains no clique of size r and no in-
dependent set of size b. The set of extremal Ramsey graphs ERG(r, b)
consists of all (r, b)-graphs with R(r, b) − 1 vertices, where R(r, b) is the
classical Ramsey number. We show that any G ∈ ERG(r, b) is r − 1
vertex connected and 2r − 4 edge connected for r, b ≥ 3.

1 Introduction

Let R(r, b) be the classical Ramsey number. An (r, b)-graph is a graph that contains
no clique of size r and no independent set of size b. Let ERG(r, b) (to abbreviate
extremal Ramsey graphs) consist of all (r, b)-graphs with R(r, b)− 1 vertices. In this
paper we identify G ∈ ERG(r, b) with a red-blue coloring of the complete graph and
we denote the graphs induced by the color classes as Gred and Gblue.

In his talk at the 2005 British Combinatorial Conference, David Penman estab-
lished various properties of extremal Ramsey graphs and conjectured that for k ≥ 3
every graph G ∈ ERG(k, k) is connected. Here we will observe that this conjecture
is true. In fact, its validity follows fairly straightforwardly from a result of Xiaodong,
Zheng, and Radziszowski [7] (see Section 2). For the sake of completeness we present
a short self-contained proof, which follows by adopting the methods in [7]. (More
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recently, Shane Malik and David Penman [4] reported to the authors that they had
independently proved this conjecture.)

Theorem 1 Let r ≥ 3, b ≥ 2, and G ∈ ERG(r, b). The red graph Gred is connected.

Proof. Assume that b ≥ 3, for otherwise Gred = Kr−1 is clearly connected.

Suppose on the contrary that V (G) = V1 ∪V2 is a proper partition of the vertices
with only blue edges across. Pick xi ∈ Vi, i = 1, 2. Create a new graph G′ by adding
a new vertex x and coloring the incident edges as follows. Color xx1 and xx2 blue.
Color xy with y ∈ Vi − xi by the color of xiy. Finally, recolor x1x2 red.

Since we have strictly increased the number of vertices, G′ must contain either a
red Kr or a blue Kb. First suppose there is a red Kr on a set R. R must contain x.
Indeed, the only difference between G′ − x and G is the color of the edge x1x2 and
this solitary red edge joining V1 and V2 cannot be in a red Kr. Since xx1 and xx2

are blue, x1, x2 6∈ R and R − x lies inside one part, say V1. But then R − x + x1 is a
red Kr in G, a contradiction. Next suppose we have a blue Kb on a set B. We must
have x ∈ B. At least one of x1, x2 is not in B since x1x2 is red now. Next suppose
x1 6∈ B. But then R − x + x1 is a blue Kb in G (because x1x2 is blue in the original
graph G.) This contradiction proves the theorem.

In the remainder of the paper, we explore how connected the red graph of G ∈
ERG(r, b) must be. We show that for r, b ≥ 3, the (vertex) connectivity κ(Gred) ≥
r − 1 and the edge connectivity λ(Gred) ≥ 2r − 4. There is no doubt that these
bounds are very far from best possible, which may be even exponential in min(r, b).
However, it is not clear how to get any essential improvement.

2 Vertex Connectivity

We will use the following result of Xiaodong, Zheng, and Radziszowski [7, Theorem 3]
which builds upon the ideas from Burr, Erdős, Faudree, and Schelp [1].

Theorem 2 (Xiaodong et al. [7]) If 2 ≤ p ≤ q and 3 ≤ r, then

R(r, p + q − 1) ≥ R(r, p) + R(r, q) +

{

r − 3, if p = 2,
r − 2, if p ≥ 3.

In particular, the case p = 2 and q = b − 1 gives the original result of Burr et al. [1,
Theorem 1] (see also [7, Theorem 1] for a small correction, namely that (1) is not
true for b = 2): for any r ≥ 2 and b ≥ 3,

R(r, b) ≥ R(r, b − 1) + 2r − 3. (1)

It follows that for any G ∈ ERG(r, b), with b ≥ 3, the minimum red degree

δ(Gred) ≥ 2r − 4. (2)
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Indeed, take any vertex x and let dGred
(x) denote its red degree. The blue neigh-

borhood of x has R(r, b) − 2 − dGred
(x) vertices and induces an (r, b − 1)-graph.

Hence,
R(r, b) − 2 − dGred

(x) ≤ R(r, b − 1) − 1,

and dGred
(x) ≥ 2r − 4 by (1), as required.

Theorem 3 Let r, b ≥ 3 and G ∈ ERG(r, b). The (vertex) connectivity of the red
graph Gred satisfies κ(Gred) ≥ r − 1.

Proof. Suppose on the contrary that we can find a partition V (G) = V1 ∪ V2 ∪ X

such that all edges between V1 and V2 are blue and 0 < |X| ≤ r − 2 (X is nonempty
by Theorem 1). Let p− 1 and q − 1 be the sizes of a maximum blue clique inside V1

and V2 respectively. Assume without loss of generality that p ≤ q.

If p = 2, then V1 spans a red clique, so |V1| ≤ r−1. The red degree of each vertex
of V1 is at most |V1| − 1 + |X| ≤ 2r − 4. By (2), all these inequalities are equalities;
in particular, |V1| = r− 1, |X| = r− 2, and all edges between V1 and X are red. But
then V1 plus any vertex from X 6= ∅ spans a red Kr, a contradiction.

So assume p ≥ 3. We have (p − 1) + (q − 1) ≤ b − 1, and

R(r, p) − 1 + R(r, q) − 1 ≥ |V1| + |V2| = |V (G)| − |X| = R(r, b) − 1 − |X|.

It follows from Theorem 2 that |X| ≥ r − 1, a contradiction.

Corollary 4 Let r ≥ b ≥ 3 and G ∈ ERG(r, b). The red graph Gred is Hamiltonian.

Proof. The Chvátal-Erdős condition [2] states that a graph of order at least 3 has a
Hamiltonian cycle if it is k-connected and does not contain a set of k+1 independent
points. By Theorem 3, this condition is satisfied for Gred when r ≥ b ≥ 3.

3 Edge Connectivity

Theorem 5 Let r, b ≥ 3 and G ∈ ERG(r, b). The edge connectivity of the red graph
Gred satisfies

λ(Gred) ≥ min{δ(Gred), κ(Gred) + r − 3}. (3)

Note that we have the trivial upper bound λ(Gred) ≤ δ(Gred). Our lower bounds for
δ(Gred) and κ(Gred) imply λ(Gred) ≥ 2r − 4.

Proof. For r = 3, the statement λ(Gred) ≥ min{δ(Gred), κ(Gred)} = κ(Gred) is simply
the trivial lower bound.

Consider r ≥ 4. Suppose that the claim is not true, that is, we can find a
proper partition V (G) = V1 ∪ V2 such that we have at most k = min{δ(Gred) −
1, κ(Gred) + r− 4} red edges across. Call these red edges F . Let vi = |Vi|. We claim
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vi ≥ δ(Gred) + 1, i = 1, 2. Indeed, there is a vertex in Vi whose F -degree is at most

⌊ k

vi

⌋ ≤ ⌊ δ(Gred)−1
vi

⌋. We have vi − 1 + ⌊ δ(Gred)−1
vi

⌋ ≥ δ(Gred), which routinely implies
that vi ≥ δ(Gred) + 1. Take xi ∈ Vi not incident to any edge of F , which is possible
since vi ≥ δ(Gred) + 1 > |F |.

Let X be a minimal set of vertices that cover the edge set F . Clearly X is a cutset
of vertices for Gred (xi 6∈ X so Vi − X 6= ∅ for i = 1, 2) and therefore |X| ≥ κ(Gred).
By Kőnig’s theorem for bipartite graphs, there is a matching M ⊂ F of size |X|.
Hence |F | − |M | ≤ k − κ(Gred) ≤ r − 4. As F consists of a matching along with no
more than r − 4 additional edges, there is no red Kr−1 that intersects both V1 and
V2.

Construct G′ from G as in the proof of Theorem 1. Namely, add a new vertex
x. Color xx1 and xx2 blue. For any vertex y ∈ Vi \ {xi}, color xy with the color
of xiy, i = 1, 2. Finally, recolor x1x2 red. We have strictly increased the number of
vertices and G ∈ ERG(r, b) so we must have a large monochromatic clique in G′.
First, suppose we have a red Kr in G′, say on a set R. This set R must contain x

because the only red edge added to G, namely x1x2, cannot appear in a red Kr. But
then x1, x2 6∈ R. Moreover, R − x lies entirely inside either V1 or V2. Suppose that
R − x ⊂ V1. But then R − x + x1 is a red r-clique in G, a contradiction.

Next suppose that we have a blue Kb ⊂ G′, on a set B. We have x ∈ B and
at least one of x1, x2 does not belong to B. Suppose x1 6∈ B. But then B − x + x1

spans a blue Kb in G (note that all edges between x1 and V2 are blue in G by the
definition of x1), a contradiction.

4 Some Small Extremal Ramsey Graphs

In conclusion, we compare our lower bounds on connectivity with the actual connec-
tivities for some small extremal Ramsey graphs.

(r, b) (3, 3) (3, 4) (3, 5) (3, 6) (3, 7) (4, 4)

R(r, b) 6 9 14 18 23 18

|ERG(r, b)| 1 3 1 7 191 1

κ(Gred) lower bound 2 2 2 2 2 3

κ(Gred) actual 2 2 4 4 4,5,6 8

λ(Gred) lower bound 2 2 2 2 2 4

λ(Gred) actual 2 2 4 4 4,5,6 8

κ(Gblue) lower bound 2 3 4 5 6 3

κ(Gblue) actual 2 4 8 11 15 8

λ(Gblue) lower bound 2 4 6 8 10 4

λ(Gblue) actual 2 4 8 11 15 8

Table 1: Lower bounds for connectivity from Theorems 3 and 5
and the actual connectivity for small extremal Ramsey graphs

Let us explain how this table is constructed. Currently, there are 6 pairs (r, b)
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with 3 ≤ r ≤ b such that the graphs in ERG(r, b) have been completely enumer-
ated; see Brendan McKay’s combinatorial data website [3]. Specifically, the extremal
Ramsey graph catalog for r = 3 and 4 ≤ b ≤ 7 and r = b = 4 (in addition to the
pair (r, b) = (3, 3)) was obtained from [3]. This data (in the graph6 format) was
processed by McKay’s showg executable and subsequently checked and analyzed by
the Combinatorica package for Mathematica.

For every such pair we checked all extremal (r, b)-graphs and wrote down the
observed edge and vertex connectivities into the table rows marked ‘actual.’ As it
turns out, the pair (r, b) = (3, 7) is the only pair from our list where different extremal
(r, b)-graphs may have different connectivities. Of the 191 graphs in ERG(3, 7), 3
are red 4-connected, 178 are red 5-connected and 10 are red 6-connected (while the
edge connectivity happens to coincide with the vertex connectivity).

For the ease of reference, we have also included our lower bounds, κ(Gred) ≥ r−1
and λ(Gred) ≥ 2r − 4 of Theorem 3 and the comment immediately after Theorem
5, respectively. As expected, there is certainly room for improvement in the lower
bounds for connectivity, even for these small graphs.
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