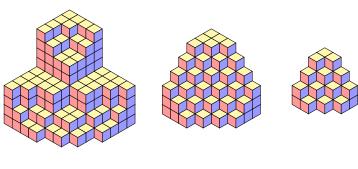
Approval Ballot Triangles

Andrew Beveridge¹
joint work with
Ian Calaway²

Macalester College 1 and Stanford University 2

Joint Mathematics Meetings April 2022

Cold Open



$$=(1,1,1,2,2,3,1,2,3,1,2,4,3,4,5)$$

Introduction

allot Froblems allot Sequences azy Ballot Sequences pproval Ballots

Introduction

Bertrand's Ballot Problem (1887*)

In a two candidate election,

- Candidate A receives a votes.
- Candidate *B* receives *b* < *a* votes.

There are

$$\frac{a-b}{a+b}\binom{a+b}{a}$$

orderings of the ballots so that A is always ahead of B during the vote count.

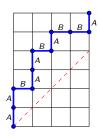
Joseph Bertrand

William Allen Whitworth

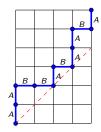
*Fun Fact: Bertrand actually rediscovered William Allen Whitworth's 1878 result.

Ballot Problems as Lattice Paths

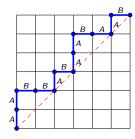
a > b, no ties allowed a > b, ties allowed a = b, ties allowed



$$\frac{a-b}{a+b}\binom{a+b}{a}$$



$$\frac{a-b}{a+b}\binom{a+b}{a} \qquad \frac{a+1-b}{a+b}\binom{a+b}{a} \qquad C_a = \frac{1}{a+1}\binom{2a}{a}$$



$$C_a = \frac{1}{a+1} \binom{2a}{a}$$

Ballot Sequences: ℓ never trails $\ell+1$

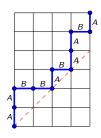
Definition

The sequence b_1, \ldots, b_n where $1 \le b_k \le k$ is a **ballot sequence** when every partial sequence b_1, \ldots, b_k contains at least as many ℓ 's as $(\ell+1)$'s for all $1 \le \ell < k$,

examples		non-examples		
$\overline{1, 1, 1}$	1, 2, 2	too many 2's		
1, 1, 2	1, 1, 3	no 2 before the 3		
1, 2, 1	2, 1, 3	must start with 1		
1, 2, 3	1, 3, 2	no 2 before the 3		

In a ballot sequence, the final tally for ℓ is greater than or equal to the final tally for $\ell+1$.

Ballot Sequences generalize Ballot Problems



$$A$$
, A , B , B , A , B , A , A , A

$$1,\quad 1,\quad 2,\quad 2,\quad 1,\quad 2,\quad 1,\quad 1,\quad 2,\quad 1$$

Bertrand's Ballot Problem is a ballot sequence $b_1, b_2, ..., b_n$ where $b_k \in \{1, 2\}$ for $1 \le k \le n$.

A Voting Procedure that Creates a Ballot Sequence

Here is a voting procedure that creates a sequence b_1, b_2, \dots, b_n such that $b_k \in [k]$.

- People enter a room, one at at item.
- Person k casts a ballot for any of the k people currently in the room.

The ballots b_1, b_2, \ldots, b_n are a **ballot sequence** provided that "person ℓ never trails person $\ell + 1$ " as the votes are cast.

Ballot Sequences are Counted by the Involution Numbers

Ballot sequences of length n are in bijection with standard Young tableaux (SYT) of size n.

• b_k records the SYT **row** that contains element k

SYT of size n are in bijection with involutions of [n] via the Robinson-Schensted correspondence. So ballot sequences are counted by the **involution numbers** (OEIS A000085)

$$1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, 35696, \dots$$

with recurrence

$$t_0 = 1,$$
 $t_1 = 1,$ and $t_n = t_{n-1} + (n-1)t_{n-2}$ for $n \ge 2$.

Lazy Ballot Sequences: Voters Can Abstain

Definition

The sequence b_1, \ldots, b_n where $0 \le b_k \le k$ is a **lazy ballot sequence** when every partial sequence b_1, \ldots, b_k contains at least as many ℓ 's as $(\ell+1)$'s for all $1 \le \ell < k$.

- We allow $b_k = 0$ which corresponds to an **abstention**.
- We do not care about the (relative) number of abstentions.

	examples				
(0, 0, 0	0, 0, 1	0, 1, 1	0, 1, 2	1, 1, 1
		0, 1, 0	1, 0, 1	1, 0, 2	1, 1, 2
		1, 0, 0	1, 1, 0	1, 2, 0	1, 2, 1
				1, 2, 3	

Lazy Ballot Sequences Counted by Switchboard Numbers

The number of lazy ballot sequences is

$$s_n = \sum_{k=0}^n \binom{n}{k} t_k$$

where t_k is the number of (regular) ballot sequences of length k.

These are the switchboard numbers (OEIS A005425).

$$1, 2, 5, 14, 43, 142, 499, 1850, 7193, 29186, 123109, \dots$$

which obey the recurrence

$$s_0 = 1$$
, $s_1 = 2$, and $s_n = 2s_{n-1} + (n-1)s_{n-2}$ for $n \ge 2$.

Approval Voting

Approval Voting

- Each voter specifies their subset of approved candidates.
- Each approved candidate receives one vote in their favor.
- The winner is the candidate with the most approval votes.

Example with candidates A, B and C.

```
Voter 1: \{A, B\}

Voter 2: \{B, C\}

Voter 3: \{B\}

Voter 4: \{A, C\}

Voter 5: \emptyset

Voter 6: \{B, C\}

Final Tally
A: 2
B: 4
C: 3
```

Approval Ballot Sequence

Definition

The sequence B_1, B_2, \ldots, B_n of (possibly empty) sets $B_k \subset [k]$ is an **approval ballot sequence** when for every $1 \le \ell < k \le n$, the partial set sequence B_1, B_2, \ldots, B_k contains at least as many ℓ 's as $(\ell+1)$'s.

Example

Ballots	Partial Tallies	
$B_1 = \{1\}$	(1,0,0)	
$B_2 = \emptyset$	(1,0,0)	
$B_3 = \{1, 2\}$	(2,1,0)	partial tallies are
$B_4 = \{3\}$	(2,1,1)	weakly decreasing
$B_5 = \{1, 2\}$	(3, 2, 1)	
$B_6 = \{2,3\}$	(3,3,2)	

Approval Ballot Sequences for n = 2

There are 7 approval ballot sequences of length 2

$$\emptyset, \quad \emptyset \\ \emptyset, \quad \emptyset \\ \{1\}, \quad \{1\} \\ \emptyset, \quad \{1\} \\ \emptyset, \quad \{1,2\} \\ \{1\}, \quad \{1,2\} \\ \{1\}, \quad \{1,2\}$$

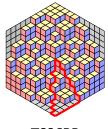
The number of approval ballot sequences of length n is

 $1, 2, 7, 42, 429, 7436, 218348, 10850216, 911835460, \dots$

Approval Ballot Sequences are TSSCPPs

Proposition (B, Calaway, 2022+)

Approval ballot sequences B_1, \ldots, B_{n-1} are in bijection with totally symmetric self-complementary plane partitions in a $2n \times 2n \times 2n$ box.



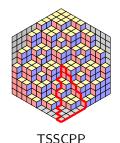
$$\{1\}, \{1\}, \{2,3\}, \{2\}$$

approval ballot sequence

Approval Ballot Sequences are TSSCPPs

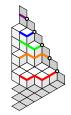
Proposition (B, Calaway, 2022+) (Doran 1993, Striker 2018)

Approval ballot sequences B_1, \ldots, B_{n-1} are in bijection with totally symmetric self-complementary plane partitions in a $2n \times 2n \times 2n$ box.

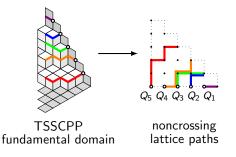


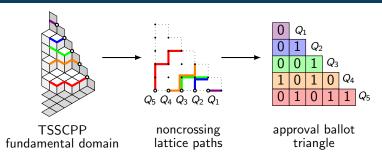
$$\{1\}, \{1\}, \{2,3\}, \{2\}$$

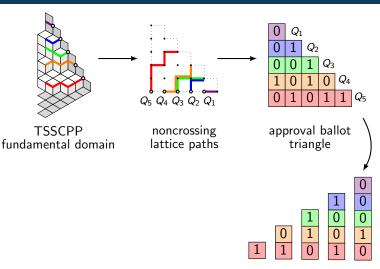
approval ballot sequence

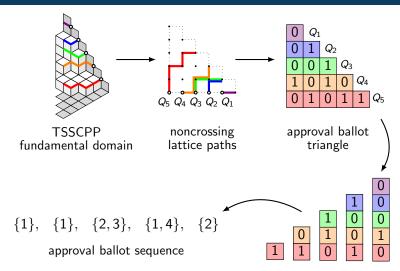


TSSCPP fundamental domain





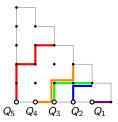




Non-Crossing Lattice Paths

Definiton

A nest of noncrossing lattice paths (NCLP) of order n is a sequence of noncrossing paths Q_1, \ldots, Q_{n-1} where path Q_i starts at (n-i,1) and ends at the diagonal $D=\{(n+1-j,j):1\leq j\leq n\}$, taking only east (1,0) steps and north (0,1) steps.



NCLP of order 6

Approval Ballot Triangles

Definiton

An approval ballot triangle (ABT) of order n is a binary triangular array A(i,j) for $1 \le j \le i \le n-1$ satisfying the row compatibility condition

$$\sum_{k=j}^{i} A(i,k) \le \sum_{k=j}^{i+1} A(i+1,k) \quad \text{for} \quad 1 \le j \le i \le n-2.$$

0				
0	1			
0	0	1		
1	0	1	0	
0	1	0	1	1

ABT of order 6

Introduction

Strict Sense Ballots

Strict Sense Ballot

Definition

A **strict-sense ballot** (SSB) for n candidates is a sequence of $N = \binom{n+1}{2}$ votes such that

- Candidate k receives n + 1 k votes
- Candidate k always leads candidate k+1 during the vote count.

The strict-sense ballot number sequence (OEIS A003121) begins with

and the general formula for the nth strict-sense ballot number is

$$\binom{n+1}{2}! \frac{\prod_{k=1}^{n-1} k!}{\prod_{k=1}^{n} (2k-1)!}.$$

Proof Part 2: Shifted SYT to Strict Sense Ballot (folklore)

Strict Sense Ballot with *n* candidates:

- Candidate k receives exactly n+1-k votes for $1 \le k \le n$
- During the vote count, candidate k always strictly ahead of candidate ℓ for all $1 \le k < \ell \le n$

Proof Part 2: Shifted SYT to Strict Sense Ballot (folklore)

Strict Sense Ballot with *n* candidates:

- Candidate k receives exactly n+1-k votes for $1 \le k \le n$
- During the vote count, candidate k always strictly ahead of candidate ℓ for all $1 \le k < \ell \le n$

Shifted SYT

 \iff

Strict Sense Ballot

Proof Part 2: Shifted SYT to Strict Sense Ballot (folklore)

Strict Sense Ballot with *n* candidates:

Shifted SYT

- Candidate k receives exactly n+1-k votes for $1 \le k \le n$
- During the vote count, candidate k always strictly ahead of candidate ℓ for all $1 \le k < \ell \le n$

Row *i* gives the indices of the votes for candidate *i*.

Strict Sense Ballot

(1,1,1,2,1,2,2,3,1,3,1,2,3,1,2,4,4,5,2,3,4,5,3,4,6,5,6,7)

strict sense ballot

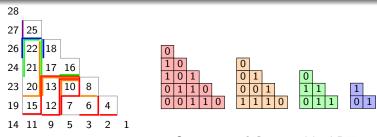
1	2	3	5	9	11	14
	4	6	7		ı	19
		8	10	13	20	23
			16	17	21	24
				18	22	26
					25	27
						28

shifted SYT

rotated by π

Theorem (B, Calaway 2022+)

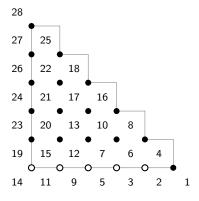
Strict Sense Ballots are in bijection with Non-Crossing Lattice Paths and sequences of "compatible" ABTs.

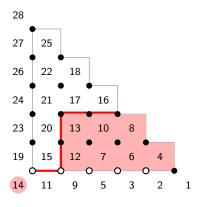


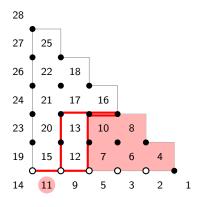
Strict Sense Ballot

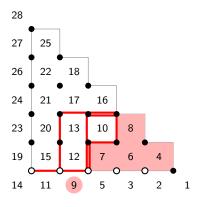
& Non-Crossing Lattice Path

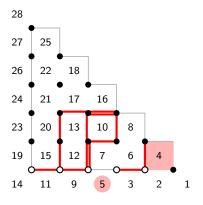
Sequence of Compatible ABTs

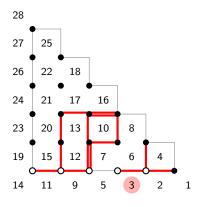


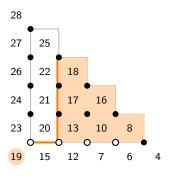


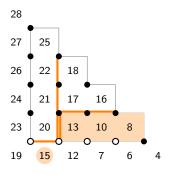


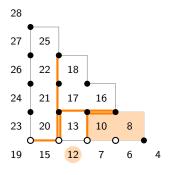


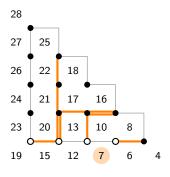




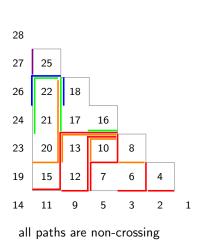


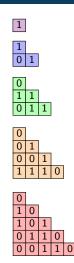






0				
1	0			
1	0	1		
0	1	1	0	
0	0	1	1	0

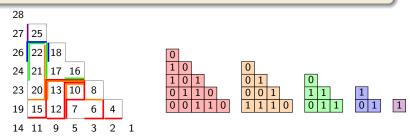




sequence of compatible ABTs

Theorem (B, Calaway 2022+)

Strict Sense Ballots are in bijection with Non-Crossing Lattice Paths and Sequences of Compatible ABTs, which we call Approval Ballot Hypertriangles.

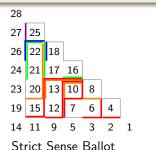


Strict Sense Ballot & Non-Crossing Lattice Path

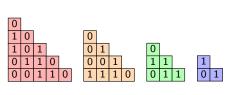
Sequence of Compatible ABTs

Theorem (B, Calaway 2022+)

Strict Sense Ballots are in bijection with Non-Crossing Lattice Paths and Sequences of Compatible ABTs, which we call Approval Ballot Hypertriangles.



& Non-Crossing Lattice Path



Sequence of Compatible ABTs Approval Ballot Hypertriangle Introduction

Approval Ballot Hypertriangles

Definiton

An approval ballot hypertriangle (ABH) of order n is a sequence $(A_{n-1}, A_{n-2}, \ldots, A_2)$ where A_{ℓ} is an ABT of order ℓ and satisfying

$$\sum_{k=j}^{i+1} A_{\ell+1}(i+1,k) \leq 1 + \sum_{k=j}^{i} A_{\ell}(i,k)$$

Definiton

An approval ballot hypertriangle (ABH) of order n is a sequence $(A_{n-1}, A_{n-2}, \dots, A_2)$ where A_{ℓ} is an ABT of order ℓ and satisfying

$$\sum_{k=j}^{i+1} A_{\ell+1}(i+1,k) \le 1 + \sum_{k=j}^{i} A_{\ell}(i,k)$$

0				
1	0			
1	0	1		
0	1	1	0	
0	0	1	1	0

Definiton

An approval ballot hypertriangle (ABH) of order n is a sequence $(A_{n-1}, A_{n-2}, \ldots, A_2)$ where A_{ℓ} is an ABT of order ℓ and satisfying

$$\sum_{k=j}^{i+1} A_{\ell+1}(i+1,k) \leq 1 + \sum_{k=j}^{i} A_{\ell}(i,k)$$

Definiton

An approval ballot hypertriangle (ABH) of order n is a sequence $(A_{n-1}, A_{n-2}, \dots, A_2)$ where A_{ℓ} is an ABT of order ℓ and satisfying

$$\sum_{k=j}^{i+1} A_{\ell+1}(i+1,k) \le 1 + \sum_{k=j}^{i} A_{\ell}(i,k)$$

Definiton

An approval ballot hypertriangle (ABH) of order n is a sequence $(A_{n-1}, A_{n-2}, \dots, A_2)$ where A_{ℓ} is an ABT of order ℓ and satisfying

$$\sum_{k=j}^{i+1} A_{\ell+1}(i+1,k) \le 1 + \sum_{k=j}^{i} A_{\ell}(i,k)$$

Definiton

An approval ballot hypertriangle (ABH) of order n is a sequence $(A_{n-1}, A_{n-2}, \dots, A_2)$ where A_{ℓ} is an ABT of order ℓ and satisfying

$$\sum_{k=j}^{i+1} A_{\ell+1}(i+1,k) \le 1 + \sum_{k=j}^{i} A_{\ell}(i,k)$$

Definiton

An approval ballot hypertriangle (ABH) of order n is a sequence $(A_{n-1}, A_{n-2}, \dots, A_2)$ where A_{ℓ} is an ABT of order ℓ and satisfying

$$\sum_{k=j}^{i+1} A_{\ell+1}(i+1,k) \le 1 + \sum_{k=j}^{i} A_{\ell}(i,k)$$

Definiton

An approval ballot hypertriangle (ABH) of order n is a sequence $(A_{n-1}, A_{n-2}, \dots, A_2)$ where A_{ℓ} is an ABT of order ℓ and satisfying

$$\sum_{k=j}^{i+1} A_{\ell+1}(i+1,k) \leq 1 + \sum_{k=j}^{i} A_{\ell}(i,k)$$

Definiton

An approval ballot hypertriangle (ABH) of order n is a sequence $(A_{n-1}, A_{n-2}, \dots, A_2)$ where A_{ℓ} is an ABT of order ℓ and satisfying

$$\sum_{k=j}^{i+1} A_{\ell+1}(i+1,k) \le 1 + \sum_{k=j}^{i} A_{\ell}(i,k)$$

Definiton

An approval ballot hypertriangle (ABH) of order n is a sequence $(A_{n-1}, A_{n-2}, \dots, A_2)$ where A_{ℓ} is an ABT of order ℓ and satisfying

$$\sum_{k=j}^{i+1} A_{\ell+1}(i+1,k) \leq 1 + \sum_{k=j}^{i} A_{\ell}(i,k)$$

Definiton

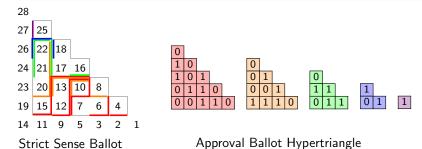
An approval ballot hypertriangle (ABH) of order n is a sequence $(A_{n-1}, A_{n-2}, \dots, A_2)$ where A_{ℓ} is an ABT of order ℓ and satisfying

$$\sum_{k=j}^{i+1} A_{\ell+1}(i+1,k) \leq 1 + \sum_{k=j}^{i} A_{\ell}(i,k)$$

Strict Sense Ballot to Approval Ballot Hypertriangle

Theorem (B, Calaway 2022+)

Strict Sense Ballots of size n are in bijection with Approval Ballot Hypertriangles. of order n.

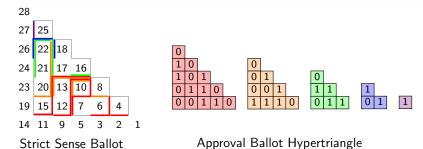


candidate k gets n+1-k votes sequence of approval ballots

Strict Sense Ballot to Approval Ballot Hypertriangle

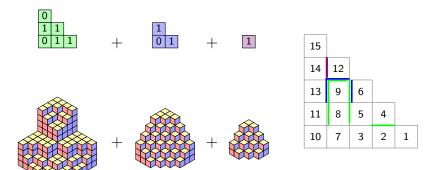
Theorem (B, Calaway 2022+)

Strict Sense Ballots of size n are in bijection with Approval Ballot Hypertriangles. of order n.

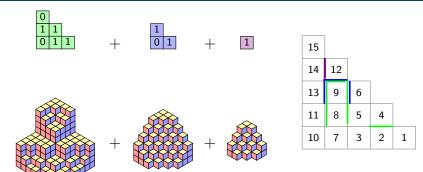


candidate k gets n+1-k votes

sequence of TSSCPPs!



(1,1,1,2,2,3,1,2,3,1,2,4,3,4,5)



(1,1,1,2,2,3,1,2,3,1,2,4,3,4,5)

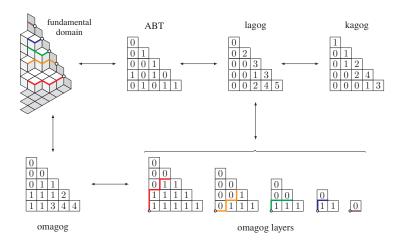
Other Triangles in Bijection with TSSCPP

We obtain more hypertriangle decompositions of a Strict Sense Ballot by using three families of triangular arrays that are in bijection with TSSCPPs.

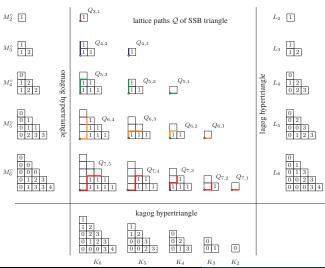
- magog triangles (Mills, Robbins, and Rumsey 1983)
- kagog triangles (B, Calaway, Heysse 2021)
- lagog triangles (new!)

Let's take a quick peek!

Triangles in Bijection with TSSCPP



Hypertriangles in Bijection with Strict Sense Ballots



Hypertriangles in Bijection with Strict Sense Ballots

Theorem (B, Calaway 2022+)

There are four different hypertriangle families that are in bijection with Strict Sense Ballots. Each of these hypertriangles encodes a sequence of compatible Totally Symmetric Self-Complementary Plane Partitions.

- ullet A TSSCPP \longleftrightarrow list of compatible lattice paths of decreasing sizes
- ullet An SSB \longleftrightarrow list of compatible TSSCPP of decreasing sizes

Hypertriangles in Bijection with Strict Sense Ballots

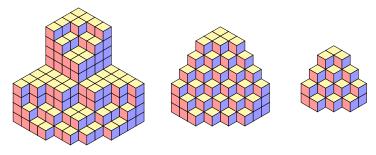
Theorem (B, Calaway 2022+)

There are four different hypertriangle families that are in bijection with Strict Sense Ballots. Each of these hypertriangles encodes a sequence of compatible Totally Symmetric Self-Complementary Plane Partitions.

- ullet A TSSCPP \longleftrightarrow list of compatible lattice paths of decreasing sizes
- ullet An SSB \longleftrightarrow list of compatible TSSCPP of decreasing sizes
- ullet An $\ref{eq:An : PR: An : PR:$

A Natural Law of Combinatorics

Careful aggregation of combinatorial structures gives rise to other interesting combinatorial structures



$$=(1,1,1,2,2,3,1,2,3,1,2,4,3,4,5)$$