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Ballot Problems

Introduction

Bertrand's Ballot Problem (1887%)

In a two candidate election,

o Candidate A receives a votes.

@ Candidate B receives b < a votes.
There are Joseph Bertrand

a—b <a + b)
*
a—+ b a ID ATMORY OF

TITIAM AYLT6N WRGUORGE:

‘UIGSR OF GEIS CRR(R 18861905

orderings of the ballots so that A is al- U0 TRT 2SS
ways ahead of B during the vote count.

William Allen Whitworth

*Fun Fact: Bertrand actually rediscovered William Allen
Whitworth's 1878 result.



Introduction

Ballot Problems as Lattice Paths

a > b, no ties allowed a > b, ties allowed a = b, ties allowed

B
s l8]A s " slalr
5 A A N
p K X s
BA//// B B/A// B BA//
A // A s A s
Al .’ Al .’ Al 7
a—b<a+b) a+1—b<a+b) c 1 (2a>
at+b\ a a+b a ° at1\a
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Introduction

Ballot Sequences: ¢ never trails £ + 1

Definition
The sequence by, ..., b, where 1 < by < k is a ballot sequence
when every partial sequence by, . .., b contains at least as many £'s

as ({+1)'sforall 1 <<k,

examples non-examples
1,1,1 1,2,2 too many 2's
1,1,2 1,1,3 no 2 before the 3
1,21 2,1,3 must start with 1
1,2,3 1,3,2 no 2 before the 3

In a ballot sequence, the final tally for £ is greater than or equal to
the final tally for £ + 1.
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Ballot Problems

Ballot Seq

Introduction

RS

Bertrand’s Ballot Problem is a ballot sequence
bi, b, ..., b, where by € {1,2} for 1 < k < n.
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Ballot Problems

Introduction

A Voting Procedure that Creates a Ballot Sequence

Here is a voting procedure that creates a sequence by, by, ..., by,
such that by € [k].

@ People enter a room, one
at at item.
@ Person k casts a ballot for

any of the k people
currently in the room.

The ballots by, by, ..., b, are a ballot sequence provided that
“person £ never trails person £ + 1" as the votes are cast.
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Ballot Problems
Ballot Sequences

Introduction

Ballot sequences of length n are in bijection with standard Young
tableaux (SYT) of size n.

@ by records the SYT row that contains element k
12]4]7] 1 2 3 4 5 6 7 8
6|8 1 5 3 6 2 4 8 7

SYT of size n are in bijection with involutions of [n] via the
Robinson-Schensted correspondence. So ballot sequences are
counted by the involution numbers (OEIS A000085)

1,1,2,4,10,26,76,232,764, 2620, 9496, 35696, . . .

(1,1,2,1,3,2,1,2) ~—

3
5]

with recurrence
to =1, t; =1, and th = tp—1+(n—1)t,—o for n>2.
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Introduction

Approval Ballots

Lazy Ballot Sequences: Voters Can Abstain

Definition
The sequence by, ..., b, where 0 < b, < k is a lazy ballot sequence
when every partial sequence by, . .., b, contains at least as many £'s

as ((+1)'sforall 1 </ < k.

@ We allow by = 0 which corresponds to an abstention.

@ We do not care about the (relative) number of abstentions.

examples

0,0,0 0,0,1 0,1,1 0
0,1,0 1,0,1 1,

1

1

,_.,_.,_\
N H R
—= N R

1,0,0 1,1,0
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Introduction

Lazy Ballot Sequences Counted by Switchboard Numbers

The number of lazy ballot sequences is

0= (7)o

k=0

where ty is the number of (regular) ballot sequences of length k.
These are the switchboard numbers (OEIS A005425).
1,2,5,14,43,142,499,1850, 7193,29186, 123109, . ..

which obey the recurrence
so =1, 51 =2, and Sn = 255-1+(n—1)sp,_p for n>2.
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Ballot Problems
. Ballot Sequences
Introduction Lazy Ballot Sequences

Approval Ballots

Approval Voting

@ Each voter specifies their subset of approved candidates.
@ Each approved candidate receives one vote in their favor.

@ The winner is the candidate with the most approval votes.

Example with candidates A, B and C.
Voter 1: {A, B}

Voter 2: {B,C} w

Voter 3: {B} : _ .
Voter 4:  {A, C} (B: ‘31 B is the winner.
Voter 5: 1] :

Voter 6: {B, C}
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Introduction

Approval Ballot Sequence

Definition

The sequence By, By, ..., B, of (possibly empty) sets By C [k] is
an approval ballot sequence when for every 1 < ¢ < k < n, the
partial set sequence By, By, ..., By contains at least as many £'s as

(£+1)'s.
Example
Ballots Partial Tallies
Bi= {1} (1,0,0)
B, = 0 (1,0,0)
B;= {1,2} (2,1,0) partial tallies are
By = {3} (2,1,1) weakly decreasing
Bs = {1,2} (3,2,1)
Bs = {2,3} (3,3,2)
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Introduction
Ap

Approval Ballot Sequences for n = 2

There are 7 approval ballot sequences of length 2

{1y, 0
0, 0

{1}, {1}
0, {1}

{1}, {2}
0, {1,2}

{1}, {1,2}

The number of approval ballot sequences of length n is
1,2,7,42,429,7436,218348,10850216, 911835460, . . .
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Ballot Problems
. Ballot Sequences
Introduction Lazy Ballot Sequences

Approval Ballots

Approval Ballot Sequences are TSSCPPs

Approval ballot sequences Bj, ..., B,_1 are in bijection with totally
symmetric self-complementary plane partitions in a 2n x 2n x 2n
box.
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{1, {1}, {23} {2}

[T 7

approval ballot sequence
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Ballot Problems
. Ballot Sequences
Introduction Lazy Ballot Sequences

Approval Ballots

Approval Ballot Sequences are TSSCPPs

Approval ballot sequences Bj, ..., B,_1 are in bijection with totally
symmetric self-complementary plane partitions in a 2n x 2n x 2n
box.
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approval ballot sequence
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Introduction

TSSCPP
fundamental domain
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Introduction

Qs Qs Q3 Q2 Q1

TSSCPP noncrossing
fundamental domain lattice paths
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Introduction

0] &
0|1 @
< 0|0f1|&s
Ir 1{0[{1[{0|Q
Qs Qe Q@ Q 0]1[0[1[1]®s
TSSCPP noncrossing approval ballot
fundamental domain lattice paths triangle
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Introduction

0] &
0|1 @
< 0|0f1|&s
Ir 1{0[{1[{0|Q
Qs Qe Q@ Q 0]1[0[1[1]®s
TSSCPP noncrossing approval ballot
fundamental domain lattice paths triangle

0]

1] ]0]
Tl
llil]ﬂl]
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Approval Ballo

Introduction

TSSCPP to Approval Ballot Sequence

0] &
0|1 @
< 0|0f1|&s
Ir 1{0[{1[{0|Q
Qs Qe Q@ Q 0]1[0[1[1]®s
TSSCPP noncrossing approval ballot
fundamental domain lattice paths triangle

0

O 1 0]

{13, {1} {23} {14}, {2} - %
approval ballot sequence m m
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Introduction

Non-Crossing Lattice Paths

A nest of noncrossing lattice paths (NCLP) of order n is a sequence
of noncrossing paths Qi, ..., Q,—1 where path Q; starts at (n—/,1)
and ends at the diagonal D = {(n+1—j,j) : 1 <j < n}, taking
only east (1,0) steps and north (0, 1) steps.

NCLP of order 6

Qs QU Q@ @ @
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Approval Ballot Triangles

Definiton

An approval ballot triangle (ABT) of order n is a binary triangular
array A(i,j) for 1 < j < i < n— 1 satisfying the row compatibility

condition
i i+1
D A( k)<Y A(i+1,k) for 1<j<i<n-2
k=j k=j

ABT of order 6

on—looo|
= OOl
—_
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Strict Sense Ballots
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Strict Sense Ballot

A strict-sense ballot (SSB) for n candidates is a sequence of N =
("31) votes such that

@ Candidate k receives n + 1 — k votes

o Candidate k always leads candidate k + 1 during the vote
count.
The strict-sense ballot number sequence (OEIS A003121)
begins with

1 1 2 12 286 33,592 23,178,480

and the general formula for the nth strict-sense ballot number is
(n + 1), [}«
. n—.
2 [T (2k —1)!



Proof Part 2: Shifted SYT to Strict Sense Ballot (folklore)

Strict Sense Ballot with n candidates:
o Candidate k receives exactly n+ 1 — k votesfor 1 < k < n
@ During the vote count, candidate k always strictly ahead of
candidate f forall 1 < k< /¢ <n

Andrew Beveridge Approval Ballot Triangles



Proof Part 2: Shifted SYT to Strict Sense Ballot (folklore)

Strict Sense Ballot with n candidates:
o Candidate k receives exactly n+ 1 — k votesfor 1 < k < n

@ During the vote count, candidate k always strictly ahead of
candidate f forall 1 < k< /¢ <n
Strict Sense Ballot

Shifted SYT —

[1]2]3
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Proof Part 2: Shifted SYT to Strict Sense Ballot (folklore)

Strict Sense Ballot with n candidates:
o Candidate k receives exactly n+ 1 — k votesfor 1 < k < n

@ During the vote count, candidate k always strictly ahead of

candidate f forall 1 < k< /¢ <n

Strict Sense Ballot

Shifted SYT <=
|1235
4?2 g 171717271,2,3,2,374
E

Row i gives the indices of the votes for candidate /. [
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Strict Sense Ballot to Sequence of NCLPs

(1,1,1,2,1,2,2,3,1,3,1,2,3,1,2,4,4,5,2,3,4,5,3,4,6,5,6,7)

strict sense ballot

[1]2]3]5]9]11[14 28]
4[6]7]12]15]19 27[25
8 [10[13[20[23 26[22[18
16[17[21[24 24[21[17[16
18[22[26 23[20[13[10] 8
25[27 19[15[12[7[6 [ 4
28 1411]9[5[3]2]1]

shifted SYT rotated by
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Strict Sense Ballot to Sequence of NCLPs

Strict Sense Ballots are in bijection with Non-Crossing Lattice Paths
and sequences of “compatible” ABTs.

[0]

1[0 (0]

1[0[1 0|1 [0]

of[1[1]0 0|01 11 (1]
o[o[1[1]o] [T][T[1[0] [o[LZ]Z] [o]Z] [T]

1411 9 5 3 2 1
Strict Sense Ballot Sequence of Compatible ABTs
& Non-Crossing Lattice Path
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Strict Sense Ballot to Sequence of NCLPs
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Strict Sense Ballot to Sequence of NCLPs
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Strict Sense Ballot to Sequence of NCLPs
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Strict Sense Ballot to Sequence of NCLPs

Andrew Beveridge Approval Ballot Triangles



Strict Sense Ballot to Sequence of NCLPs

28

27 | 25

26

24

23

19

14

o|lr|o|o
=
o

o|Oo| |
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Strict Sense Ballot to Sequence of NCLPs

28
27 | 25
26 | 22 18
[ ]
24 | 21 17 16
23 | 20 | 13| 10
19 | 15 | 12 7 4
14 11 9 5 2 1

Andrew Beveridge
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Strict Sense Ballot to Sequence of NCLPs

28

27 | 25
[ S

26 | 22| 18
[ ] [

24 | 21 17 16
[ ] [ ]

23 | 20 13 10
O o}

19 15 12 7

Andrew Beveridge
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Strict Sense Ballot to Sequence of NCLPs

28

27

26

24

23

19

21

18
[
17 16
L
13 10 8
12 7 6

Andrew Beveridge

001

1[1[1]0]
[0]

1[0

1[o[1

0[L[1]0

0[o[1]1]0]
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Strict Sense Ballot to Sequence of NCLPs

28

27

26

24

23

19

21

18
[
17 16
13 | 10 8
12 7 6

Andrew Beveridge

0|1
0[0[1
1[1[1]0]
[0]
1[0
1[o[1
0[L[1]0
0[o[1]1]0]
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Strict Sense Ballot to Sequence of NCLPs

28

27

26

24

23

19

25

22

21

20

15

18

17

13

12

16

10

Andrew Beveridge

0

0|1

0[0[1

1[1[1]0]
[0]

1[0

1[o[1

0[L[1]0

0[o[1]1]0]
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Strict Sense Ballot to Sequence of NCLPs

[1]
0

28

27

26

24

23

19

14

25

22 | 18

21| 17 16

20 ||l 13 || 10 8

15 | 12 |T 6 4

11 9 5 3 2 1

all paths are non-crossing

Andrew Beveridge

o[~[o]
fun

sequence of
compatible
ABTs
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NEEE
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[ay
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1[1]0]
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Strict Sense Ballot to Sequence of NCLPs

Strict Sense Ballots are in bijection with Non-Crossing Lattice Paths
and Sequences of Compatible ABTs, which we call Approval Ballot

Hypertriangles.
28
27|25
26 22[|18 0l
2412117 16 110 0 _
1[0 0[1 0 -
23|20 of1[1[0 0[0[1 11 1
1915 o[o[1]1]o] [1]T|1]o] [o]Z]Z] [o]x] [1]
1411 9 5 3 2 1
Strict Sense Ballot Sequence of Compatible ABTs

& Non-Crossing Lattice Path
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Strict Sense Ballot to Sequence of NCLPs

Strict Sense Ballots are in bijection with Non-Crossing Lattice Paths
and Sequences of Compatible ABTs, which we call Approval Ballot
Hypertriangles.

W —
1[0 0 n
1[o[T 0|1 0 -
0|1|1]|0 0[|0]1 1|1 1
o[o[1]1]o] [1]T|1]o] [o]Z]Z] [o]x] [1]

1411 9 5 3 2 1

Strict Sense Ballot Sequence—etCompatibleABTs

& Non-Crossing Lattice Path Approval Ballot Hypertriangle
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Approval Ballot Hypertriangles
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Approval Ballot Hypertriangles

An approval ballot hypertriangle (ABH) of order n is a sequence
(Ap—1,An—2...,A2) where A, is an ABT of order ¢ and satisfying

i+1 i
D Apa(i+1,k) <14 Ai, k)
k=j k=j

forl1<j<i<f—1land2</¢<n-—2.

(0]

1[0 (0]

1[of1 0|1 (0]

of1]1]o0 ofof1 11 (1]
ofo[1]1]0] 1[1]1]0] 0[1]1] 0[1]
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Approval Ballot Hypertriangles

An approval ballot hypertriangle (ABH) of order n is a sequence
(Ap—1,An—2...,A2) where A, is an ABT of order ¢ and satisfying

i+1 i
D Apa(i+1,k) <14 Ai, k)
k=j k=j

forl1<j<i<f—1land2</¢<n-—2.

—
o

oo'—u—no]
NN EE
[N

1[1]0]
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Approval Ballot Hypertriangles

An approval ballot hypertriangle (ABH) of order n is a sequence
(Ap—1,An—2...,A2) where A, is an ABT of order ¢ and satisfying

i+1 i
D Apa(i+1,k) <14 Ai, k)
k=j k=j

forl1<j<i<f—1land2</¢<n-—2.

—
o

OO!—‘HOI
NEEE
i

1[1]0]
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Approval Ballot Hypertriangles

An approval ballot hypertriangle (ABH) of order n is a sequence
(Ap—1,An—2...,A2) where A, is an ABT of order ¢ and satisfying

i+1 i
D Apa(i+1,k) <14 Ai, k)
k=j k=j

forl1<j<i<f—1land2</¢<n-—2.

[0]

1[0 [0]
1[0[1 01
o[1]1]0 ofo[1
0[0[1]1]0] 1[1[1]0]
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Approval Ballot Hypertriangles

An approval ballot hypertriangle (ABH) of order n is a sequence
(Ap—1,An—2...,A2) where A, is an ABT of order ¢ and satisfying

i+1 i
D Apa(i+1,k) <14 Ai, k)
k=j k=j

forl1<j<i<f—1land2</¢<n-—2.

[0] 1

1[0 01
1[0]1 R
ol1|1]0 olof1]1
0[0]1[1]0] 1[1[1[o[1
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Approval Ballot Hypertriangles

An approval ballot hypertriangle (ABH) of order n is a sequence
(Ap—1,An—2...,A2) where A, is an ABT of order ¢ and satisfying

i+1 i
D Apa(i+1,k) <14 Ai, k)
k=j k=j

forl1<j<i<f—1land2</¢<n-—2.

[0] 1

1[0 01
1[0]1 o[1]T
ol1|1]0 ofof1]1
0[0]1[1]0] 1[1[1[0]1
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Approval Ballot Hypertriangles

An approval ballot hypertriangle (ABH) of order n is a sequence
(Ap—1,An—2...,A2) where A, is an ABT of order ¢ and satisfying

i+1 i
D Apa(i+1,k) <14 Ai, k)
k=j k=j

forl1<j<i<f—1land2</¢<n-—2.

[0]

1[0 [0]
1[0[1 01
o[1]1]0 ofo[1
0[0[1]1]0] 1[1[1]0]
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Approval Ballot Hypertriangles

An approval ballot hypertriangle (ABH) of order n is a sequence
(Ap—1,An—2...,A2) where A, is an ABT of order ¢ and satisfying

i+1 i
D Apa(i+1,k) <14 Ai, k)
k=j k=j

forl1<j<i<f—1land2</¢<n-—2.

[0]

1[0 [0]

1[of1 01 [0]

ol[1]1]o0 olof1 11

o[o[1]1]0] 1[1]1]0] 0]1]1]
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Approval Ballot Hypertriangles

An approval ballot hypertriangle (ABH) of order n is a sequence
(Ap—1,An—2...,A2) where A, is an ABT of order ¢ and satisfying

i+1 i
D Apa(i+1,k) <14 Ai, k)
k=j k=j

forl1<j<i<f—1land2</¢<n-—2.

[0]

1[0 [0] [1]
1jo]1 0[1 0[1
o[1]1]o 0[o[1 1[1]1
o[of1]1]0] 1]1]1]o] [o]L]1]1]
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Approval Ballot Hypertriangles

An approval ballot hypertriangle (ABH) of order n is a sequence
(Ap—1,An—2...,A2) where A, is an ABT of order ¢ and satisfying

i+1 i
D Apa(i+1,k) <14 Ai, k)
k=j k=j

forl1<j<i<f—1land2</¢<n-—2.

[0]

1[0 [0]

1[of1 01 [0]

ol[1]1]o0 ofof1 11

o[o[1]1]0] 1[1]1]0] 0[1]1]
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Approval Ballot Hypertriangles

An approval ballot hypertriangle (ABH) of order n is a sequence
(Ap—1,An—2...,A2) where A, is an ABT of order ¢ and satisfying

i+1 i
D Apa(i+1,k) <14 Ai, k)
k=j k=j

forl1<j<i<f—1land2</¢<n-—2.

[0]

1[0 [0]

1[of1 01 [0]

ol[1]1]o0 ofof1 11 1
o[o[1]1]0] 1[1]1]0] 0[1]1] 01
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Strict Sense Ballot to Approval Ballot Hypertriangle

Strict Sense Ballots of size n are in bijection with Approval Ballot
Hypertriangles. of order n.

F —
1(0 0 -
E 0|1 0 -
0(1|1|0 0|0]|1 1(1 1
o[o[I[1]o] [r]x]x[o] [o]1][1] [o]T] [1]
1411 9 5 3 2 1
Strict Sense Ballot Approval Ballot Hypertriangle
candidate k gets sequence of approval ballots

n+ 1 — k votes
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Strict Sense Ballot to Approval Ballot Hypertriangle

Strict Sense Ballots of size n are in bijection with Approval Ballot
Hypertriangles. of order n.

F —
1(0 0 -
E 0|1 0 -
0|1|1]|0 0|0]|1 1(1 1
o[o[I[1]o] [r]x]x[o] [o]1][1] [o]T] [1]
1411 9 5 3 2 1
Strict Sense Ballot Approval Ballot Hypertriangle
candidate k gets sequence of TSSCPPs!

n+ 1 — k votes
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(1,1,1,2,2,3,1,2,3,1,2,4,3,4,5)

Approval Ballot Triangles
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(1,1,1,2,2,3,1,2,3,1,2,4,3,4,5)
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Other Triangles in Bijection with TSSCPP

We obtain more hypertriangle decompositions of a Strict Sense

Ballot by using three families of triangular arrays that are in
bijection with TSSCPPs.

@ magog triangles (Mills, Robbins, and Rumsey 1983)
e kagog triangles (B, Calaway, Heysse 2021)
e lagog triangles (new!)

Let's take a quick peek!
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Triangles in Bijection with TSSCPP

fundame;mal ABT lagog kagog
domain - - -
0] 0] ESE
0]1 0]2 0]1
~— [0]0]1L ~— [0]0]3 ~— [0]1]2
1[o]1]0] [INE 0J0]2]4]
ol1]o[1]1] 0[0]2[4]5] 0/0/0[1]3]
0] 0]
0/0 0[]0 -
0[1]1 — 0f1]1 0]0 0
1[1]1 1]1]1] ool 10/0] 0]
1]1]3]4]4] 1lf1]1[1] Jol1f1]1 1[1f1] Jit]
omagog omagog layers
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Hypertriangles in Bijection with Strict Sense Ballots

Mg

lattice paths Q of SSB triangle

Qa1

Mg

9[3uernadAy SoSewo
lagog hypertriangle

o [0]T [0]2
Mg ST ] Q2 Qs, Ls 191073
0[2]3]3] 11] 0[1]2]3]
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Hypertriangles in Bijection with Strict Sense Ballots

There are four different hypertriangle families that are in bijection
with Strict Sense Ballots. Each of these hypertriangles encodes a

sequence of compatible Totally Symmetric Self-Complementary Plane
Partitions.

@ A TSSCPP <— list of compatible lattice paths of decreasing
sizes

@ An SSB +— list of compatible TSSCPP of decreasing sizes
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Hypertriangles in Bijection with Strict Sense Ballots

There are four different hypertriangle families that are in bijection
with Strict Sense Ballots. Each of these hypertriangles encodes a

sequence of compatible Totally Symmetric Self-Complementary Plane
Partitions.

@ A TSSCPP <— list of compatible lattice paths of decreasing
sizes
@ An SSB +— list of compatible TSSCPP of decreasing sizes

@ An 777 <— list of compatible SSBs of decreasing sizes
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(1,1,1,2,2,3,1,2,3,1,2,4,3,4,5)

Careful aggregation of combinatorial structures gives rise

to other interesting combinatorial structures
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