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1. Introduction
In the Harry Potter stories [R], each new year at the Hogwarts School for Witchcraft and 
Wizardry starts with the ceremonial assignment of the new first-year students to one of the 
four houses: Griffindor, Hufflepuff, Ravenclaw, and Slytherin. This is a milestone for the young 
students because their assigned houses greatly influence their future direction. The crucial 
assignment process is entrusted to the magical Sorting Hat, which provides a moment of 
revelation for the student. Indeed, this sentient garment uses its magical perception to reveal 
the student’s personality and strengths, and consequently places the student into the best-
suited house. However, we cannot help but observe another pattern in the assignments. 
Every year, the 40 students are split evenly, both among houses and by gender. Perhaps the 
Hat respects some constraints as it divides the students.

This constrained optimization problem captures a fanciful moment of high drama. However, a 
strikingly similar process takes place annually on college campuses across the United States. 
Rather than assigning students to houses, colleges must distribute incoming students among 
an offering of first-year seminars. These courses ease the transition into college by introduc-
ing the paradigms, expectations, and standards of higher education [B]. Like the houses of 
Hogwarts, many first-year seminars strive to develop community within the classroom, the 
student body, and the institution as a whole. Some colleges use seminars with uniform con-
tent, but many offer a variety of discipline-specific seminars whose content is as disparate as 
the interests of the faculty. In this latter setting, assigning first-years to seminars becomes 
remarkably similar to the job of the Sorting Hat.

Macalester College, a liberal arts college with about 2000 students, offers discipline-specific 
first-year courses. Macalester places great institutional effort in developing these courses and 
supporting their efficacy. Likewise, matching each student to a desired course is also taken 
very seriously. Prior to 2009, this assignment was performed by hand using a labor-intensive 
process. This process was ripe for improvement, both in terms of efficiency and quality of 
assignment. Without access to sorcery, we decided to use the next best thing: mathematics! 
This paper describes the evolution of our automated procedure for creating an assignment. 
Our first solution leveraged the classic Minimum Weight Perfect Matching algorithm from 
graph theory, with excellent results. More recently, we set out to improve our process by 
developing a more flexible approach using Integer Linear Programming. This paper traces the 
evolution of this process and discusses the resulting measurable improvements.
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2. First Year Course Assignment at Macalester 
Every department at Macalester offers one or more first-year seminars, called First-Year 
Courses (FYCs). In a given year, no two FYCs are alike. During early summer, students are 
given course descriptions and rank their top four choices. The Academic Programs office (AP) 
compiles the student preferences and is responsible for assigning students to courses, while 
respecting some modest constraints on the enrollment profile of each seminar. Typically, 
about 500 incoming students must be placed into about 35 FYCs. The goal is to place each 
student into a course that he or she ranked, while also trying to maximize overall student 
satisfaction. Roughly speaking, this means trying to have many first- and second-choice 
placements, and far fewer third- and fourth-choice placements.

Academic Programs also tries to enforce the following constraints, designed to keep a uniform 
experience among classes. First, the class size must be between 10 and 16 students. Sec-
ond, the demographics of each class should be roughly comparable to the entire student 
body. Historically, this has meant enforcing a gender balance by reserving 4 seats for men 
and 4 seats for women. Macalester’s student body is 60% female, so this constraint becomes 
relevant in a few seminars each year. Finally, international students make up 11% of the 
student body, and AP has found it useful to cap the number of international students in any 
course at 8.

In a given year, it may not be feasible to assign each student to a ranked choice while enforc-
ing all constraints. In these situations, AP allows some isolated constraint violations so that 
every student ends up in a desired course; the alternative — placing a student in an unranked 
course — is deemed unacceptable.

Prior to 2009, the assignment was performed by hand. Each student’s four preferences were 
listed on a sheet of paper and these were organized into piles, each pile representing a semi-
nar. Two staff members would spend a week looking for beneficial chains of swaps that would 
improve the overall profile of the assignment. Ultimately, this method worked well: Figure 1 
shows some historical results for these manual assignments. In §4 we will show how to get an 
assignment for the 2004 data that puts 97.3% into their top two choices (as opposed to the 
87.4% from Fig. 1). On average, AP placed 87% of students into their first or second choices. 
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Figure 1: Manual assignment profiles, 2003–2008

3. The Hungarian Sorting Hat
In 2008, the first author and Macalester senior Sean Cooke tackled the FYC Assignment 
Problem in a senior seminar in Combinatorial Optimization. Our goal was to automate the 
process by converting the problem to an Assignment Problem (described below). In addition 
to the benefits of automation, we were confident that we could also improve the quality of the 
assignment. We approached this as a consulting project, where the “client” was the AP office. 
Through a series of meetings with them, we identified their requirements, constraints, and 
priorities. We used historical data to fine-tune our solution, presented prototypes, and received 
feedback on their performance. This sustained dialog was crucial in the final design, and also 
to successfully “sell the client” on adopting the algorithm. In particular, we showed AP that our 
algorithm, dubbed the Hungarian Sorting Hat because of its use of the Hungarian matching 
algorithm, outperformed their manual assignments on the historical data. They adopted our 
automated framework in summer 2009, and have used it ever since, but with an algorithm 
change in 2013 (§4).

Figure 2 shows the performance of the Hungarian Hat from 2009 to 2012. The average (1st, 
2nd, 3rd, 4th) percentages for the manual assignments of Figure 1 were 58.8%, 27.9%, 
10.7%, 2.6%. The average performance of the Hungarian Hat is 59.5%, 31.3%, 8.3%, 0.9%. 
Even though the years are different than those in Figure 1, this improvement is typical for the 
comparison: the Hungarian Hat placed 4.1% more students in their first or second choices, 
compared with the manual assignments, as well as many fewer into a fourth choice.
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Figure 2: Assignments by the Hungarian Sorting Hat, 2009–2012.

We now describe the mathematics behind the Hungarian Sorting Hat. The FYC Assignment 
Problem is a variant of the classic Assignment Problem (see [C]). Suppose that we have n 
workers and n jobs to be filled. Each worker is qualified to perform a subset of the jobs, 
though his salary depends upon the job assigned. The objective is to find a matching of work-
ers to jobs that minimizes total cost. This situation can be modeled by a weighted bipartite 
graph, where the n vertices in one part correspond to the workers and the n vertices in the 
other part represent the jobs. If worker i is qualified to perform job j at the cost ci j, then we 
connect the corresponding vertices with an edge of that weight. This optimization problem is 
solved by the very fast Hungarian Algorithm, developed by Kuhn, who was extending the work 
of the Hungarian mathematicians Kőnig and Egerváry. A detailed description of the method is 
in [BM, chap 5]. The algorithm analyzes the weighted bipartite graph, and returns a minimum 
weight perfect matching. This matching corresponds to an optimal assignment of workers to 
jobs. The basis of the algorithm is the use of swaps along augmenting paths, a very natural 
idea and one that was used in an informal way by the AP staff when the job was handled 
manually.

Our main challenge was to convert the FYC Assignment Problem into a classic Assignment 
Problem. This involved two steps. First we created a bipartite graph that enforced the college 
constraints on class size and class demographics. Second, we chose a weighting scheme that 
ensured that the Hungarian Algorithm made trade-offs that are consistent with the goals and 
priorities of the AP office. As we have already seen in Figure 2, the resulting matchings were 
of high quality during these years.  

We summarize the features of the resulting graph. For a more thorough explanation, see [BC]. 
In order to run the Hungarian Algorithm, we need a bipartite graph G with parts X  and Y , 
where †X § = †Y §, so we start by describing these sets. The set X  will represent the students 
(workers) and the set Y  will represent the classes (jobs). For each class, we place 16 vertices 
into Y , one for each seat available. Next, we place a vertex in X  for each student. Of course, 
there are more class seats than students, so we add some additional “dummy” vertices to X  to 
balance this out. These dummy vertices will ultimately correspond to empty class seats.
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Next, we describe the edge structure of G from the seminar perspective; a small part of the 
graph is in Figure 2. This edge structure enforces class size and demographic constraints. A 
given seminar has 16 corresponding vertices. Eight of these vertices are adjacent to every 
student interested in the course. Four of the vertices are adjacent only to interested US 
women, and the final 4 vertices are adjacent exclusively to interested US men. A fully enrolled 
class must have at least 4 US women and 4 US men, and a maximum of 8 international stu-
dents. Finally, each dummy vertex is adjacent to one US woman’s seat, one US man’s seat, 
and four generic seats. This means that there can be at most 6 unfilled seats, for a minimum 
enrollment of 10 students. Furthermore, a class of size 10 is only required to have 3 US 
women and 3 US men.
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Figure 3:  The edges connecting the 16 seats in one class to the four types of student: domes-
tic female, international, domestic male, and dummy students. The edge structure assures 
that a perfect matching will respect the desired constraints.

Finally, we describe the edge weights. We ultimately settled on a geometric weighting 
scheme, where the weights of first, second, third, and fourth choice classes were given by the 
weight vector I1, a, a2, a3M for a well chosen a > 1. This scheme has a natural interpretation in 
terms of trade-offs one is willing to make in swapping students between classes. The base 
weight a is the upper bound on the number of students k we are willing to move down from 
first choice to second choice in order to move a single person up from a third choice to sec-
ond. This leads to a smaller weight matching precisely when 0 > k Ha- 1L+ Ia- a2M = 
Hk -aL Ha- 1L, a condition equivalent to k < a.  Other swaps have analogous interpretations. In 
practice, AP would often perform 2-to-1 and 3-to-1 swaps of this kind. Therefore, we ended up 
using a = 3.5 as our geometric weight (which also provided results that were stable under 
minor changes to the weight value).

The last weight we must describe is the one used for the dummy students. The algorithm 
should always prefer to place a real student in a class before placing a dummy student. This 
can be accomplished by giving the dummy edge a weight much larger than any of the “real” 
edges in the graph. In practice, the value a4 does the trick. And of course, dummy students 
have no class preferences, so every dummy edge in the graph is given this same weight. This 
concludes the description of the weighted graph model.
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This model was a useful tool for attaining a desirable outcome: when there is an assignment 
that meets all constraints, the algorithm is guaranteed to find it, and it is very fast. But it can 
and does happen that the graph does not have a perfect matching (a matching that covers all 
vertices). This will happen if the constraints cannot all be met: perhaps there is a course that 
only 3 men have chosen as possibilities; or 3 courses that have male preferences with overlap 
so that not all of them can have 4 men. In such cases there is no perfect matching in the 
graph and the algorithm fails. Another difficulty (which arose for us in 2013) is when student 
choices are such that the class-size constraint (either the minimum or the maximum) cannot 
be met. For example, the data might force there to be, say, 12 classes that must increase 
enrollment to 17. Some of these problems can be handled by setting up a new graph but that 
is tedious, and worse, there is no global solution. For example, one cannot set up a graph that 
will provide at most 12 classes of size 17. Instead, one must specify which particular classes 
will rise to 17.

Yet another problem arises when a college has a different set of constraints. For example, 
Beloit College uses our methods, but wishes to avoid having students from the same high 
school placed in the same class, something that cannot easily be set up in the graph environ-
ment. We imagine that some colleges might want to restrict on other demographics, such as 
state of residence or athletic participation. Such issues (infeasible or complicated constraints) 
will lead to trouble for the Hungarian Sorting Hat. This led us to the Integer Linear Program-
ming method, which is easy to set up, can handle a wide variety of constraints, and will always 
perform at least as well as the graph theory method.

4.  A Flexible Sorting Hat
Classic linear programming (LP) problems can be solved very quickly by the venerable sim-
plex method. This is quite similar to Gaussian elimination: a straightforward algebraic process. 
For combinatorial optimization one often needs integer linear programming (ILP), where the 
variables are constrained to have integer values. Algorithms for ILP work by making repeated 
(100s or 1000s) calls to LP, using a branch-and-bound approach. A very brief introduction to 
branch-and-bound is in [W]; see [T] for more detail.

In LP or ILP we need a linear system of inequalities and an objective function so that (a) a 
solution to the system gives as a workable assignment of students, and (b) minimizing the 
objective gives an assignment that maximizes student happiness.

The basic variables are easy to set up. Because we will use ILP, all variables are restricted to 
be integers. Let the students be S i, 1 § i § n, and the courses C j, 1 § j § m. Let the prefer-
ences of S i be Pi, a set of four integers, the indices for courses the student is willing to take. 
For each course C j, let X j be the set of student indices i so that j œ Pi; that is, X j is the set of 

students having C j as one of their choices; subdivide this farther into X j
male and X j

female to 

denote the male or female students willing to take C j, and also let X j
intl be the set of interna-

tional students willing to take the course. As noted, student preferences can be problematic; 
an extreme case would be some X j = «, but if some X j is very small that will also require 
some manual intervention, or possibly the canceling of a class. We will describe the setup for 
the constraints as given above; a reader facing different constraints should be able to modify 
the setup without difficulty.
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For each pair IS i, C jM where course j œ Pi, introduce a variable xi, j, which is to be 0 or 1, with 
a 1 indicating that S i is assigned to C j. This contributes 4 n variables.

The Basic Constraint.  For each variable, 0 § xi, j § 1. Also, each student gets exactly one 
course: for each i § n, ⁄jœPi xi, j = 1.

The Objective Function.  We want to minimize unhappiness. So if Pi = 9 j i,1, j i,2, j i,3, j i,4=, the 

objective is to minimize ⁄i=1
n xi, ji,1 +a xi, ji,2 +a2 xi, ji,3 +a3 xi, ji,4 , where a > 1 is a fixed parameter 

as described in §3.

Course Size Constraint.  There will be an upper bound, U, and a lower bound, L, on course 
size; for each j § m, L § ⁄iœX j xi, j § U.

Gender Constraint.  A typical gender constraint might be that each course contains at least 
four students of each gender: for each j § m, ⁄iœX jmale xi, j ¥ 4 and ⁄iœX jfemale xi, j ¥ 4.

International Constraint.  Each course contains at most B international students: for each 
j § m, ⁄iœX jintl xi, j § B.

The preceding are the ideal constraints, but it can happen that not all of them can be met. One 
way to handle typical problems is to introduce extra variables. For ease of exposition, assume 
HL, UL = H12, 16L, but other values can be handled in the same way. Since allowing a course to 
grow to 17 is common, as is allowing a course to have fewer than 12, let q j,s be a 0-1 variable 
that indicates that the size of C j is s, where 9 § s § 17. Assume that four parameters Q17, 
Q11,Q10, Q9 are given; they represent the maximum number of classes whose size is allowed 
to be 17, 11, 10, 9, respectively. Now the number of variables is 4 n+ 4 m.

Then the ideal size constraint is replaced by the following: 

     for each j and s: 0 § q j,s § 1;
     ⁄j q j,17 § Q17      (number of courses with 17 students is at most Q17);

     ⁄j q j,11 § Q11      (number of courses with 11 students is at most Q11);

     ⁄j q j,10 § Q10      (number of courses with 10 students is at most Q10);

     ⁄j q j,9 § Q9         (number of courses with 9 students is at most Q9);

and for each j § m: 

     ⁄s=9
17 q j,s = 1        (size of C j is a unique value between 9 and 17);

     ⁄iœX j xi, j = ⁄s=9
17 s q j,s           (size of C j is given by the q-indicator).
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A similar enhancement relaxes a gender requirement: replace the ideal male constraint by the 
addition of indicator variables ym, j so that a value of 1 means that C j has m males. The new 

constraints are ⁄m=0
17 ym, j = 1 and ⁄m=0

17 m ym, j = ⁄iœX jmale xi, j (both for all j), and, say, 

⁄j y0, j = ⁄j y1, j = ⁄j y2, j = 0 and ⁄j y3, j § Y3, where Y3 is a new parameter that bounds the 

number of courses that can be male-deficient by 1. And can also bring in Y2 if needed for 
courses with two males. The variable count is now 4 n+ 22 m.

Mathematica has ILP available and can handle a typical setup (there are about 3000 varibles 
in our case) in under five seconds, returning either the optimal solution or a message indicat-
ing that the constraints are not feasible. This is so fast that one can run the routine repeatedly 
to learn what is feasible and what is not. It is when the basic setup is infeasible that ILP is 
most useful, since the auxiliary bounds (Qi, Y3) can be tweaked until a solution is found. 

Before using ILP for real, we tried it on past data sets. The 2004 case was interesting: The 
profile — 1st through 4th percentages of the manual assignment — was 
H59%, 29%, 11%, 1.4%L. The data were such that there had to be a course with only 2 men; 
other than that the male constraint could be satisfied. Because that course was easily identi-
fied, the graph matching approach would work since we can just adjust the edge set for that 
one course. But things can be more subtle, involving several courses, and there might not be 
a simple edge-adjustment approach available.

Using ILP we can vary the settings for the number of male-deficient courses (the Y3 and Y2 
mentioned earlier), which is how we learn the minimum violations. We can also add con-
straints of the form "number of 4ths is at most P4" as a way of discovering the minimum num-
ber of 4th choices (it is 6), and similarly for 3rd choices (it is 8). Using a = 1.5 gives the profile 
H69%, 27%, 3.3%, 1.2%L, while using a = 5.5 gives H65%, 33%, 1.5%, 1.2%L. The latter has 
fewer in #3 and #4, but the former has quite a few more in #1. This sort of trade-off is what we 
typically present to AP. Both are significantly better than the manual result. As a bonus, we 
learn that the a = 5.5 profile is completely optimal as far as minimizing #3s and #4s. This 
leads to another optimization idea, which is to first minimize the number of 4th choices, then 
minimize the number of 3rd choices subject to the number of 4th choices being minimal, and 
then once more for 2nd choices. Such a method is useful in some ILP problems, but we found 
that here it is equivalent to using a large value of a.

Here is how things worked in July 2013 at Macalester. There were 550 students and 34 
courses. But the data set was more difficult than average and there could be no assignment 
that respected either the upper bound of 16 or the minimum-male requirement of 4. It was 
easy to learn that there had to be at least twelve courses of size 17 and at least two courses 
with only 3 males. Because the choice of twelve courses to expand is not clear, there is no 
easy adjustment to the graph method that can handle this. But ILP has no problem, setting the 
oversize parameter Q17 to 12.

Figure 4 shows a chart of the sort we presented to AP in 2013. It shows that: twelve courses 
have size increased to 17 students, no course has fewer than 14 students, and two courses 
have only 3 males. The preference profile is: 55% into choice #1, 82% into choice #1 or #2, 
and 3.8% into choice #4. This is definitely worse than other years, but this data set was less 
than ideal.
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Figure 4:  The profile for an assignment produced by ILP for actual 2013 data. Two courses 
have three males, and twelve courses have 17 students.

In 2013, our ILP method was also used at Beloit College, with 96% getting choice #1 or #2, 
and 2% getting choice #4. One word of warning though: ILP is an NP-complete problem and 
so if the class size grows into the thousands it will likely be too slow.

5. Conclusion
This topic is useful to colleges in several ways. It helps the mathematics department, since in 
an optimization or applied mathematics course, the students find the whole discussion fascinat-
ing, as it involves something they are very familiar with. They quickly appreciate the potential 
of both graph theory and ILP to be useful in diverse situations (an especially noteworthy 
application of both ILP and matching algorithms is in the optimal arrangement of kidney trans-
plants [A]). And of course the methods are directly beneficial to the college administration. It is 
clear that a sophisticated algorithm will outperform any manual approach to the FYC assign-
ment problem. 
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Any reader interested in learning how our approach could work at their institution should 
contact us.
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