
The Sorting Hat Goes to
College

Andrew Beveridge and Stan Wagon, Macalester College
abeverid@macalester.edu
wagon@macalester.edu

1. Introduction
In the Harry Potter stories [R], each new year at the Hogwarts School for Witchcraft and
Wizardry starts with the ceremonial assignment of the new first-year students to one of the
four houses: Griffindor, Hufflepuff, Ravenclaw, and Slytherin. This is a milestone for the young
students because their assigned houses greatly influence their future direction. The crucial
assignment process is entrusted to the magical Sorting Hat, which provides a moment of
revelation for the student. Indeed, this sentient garment uses its magical perception to reveal
the student’s personality and strengths, and consequently places the student into the best-
suited house. However, we cannot help but observe another pattern in the assignments.
Every year, the 40 students are split evenly, both among houses and by gender. Perhaps the
Hat respects some constraints as it divides the students.

This constrained optimization problem captures a fanciful moment of high drama. However, a
strikingly similar process takes place annually on college campuses across the United States.
Rather than assigning students to houses, colleges must distribute incoming students among
an offering of first-year seminars. These courses ease the transition into college by introduc-
ing the paradigms, expectations, and standards of higher education [B]. Like the houses of
Hogwarts, many first-year seminars strive to develop community within the classroom, the
student body, and the institution as a whole. Some colleges use seminars with uniform con-
tent, but many offer a variety of discipline-specific seminars whose content is as disparate as
the interests of the faculty. In this latter setting, assigning first-years to seminars becomes
remarkably similar to the job of the Sorting Hat.

Macalester College, a liberal arts college with about 2000 students, offers discipline-specific
first-year courses. Macalester places great institutional effort in developing these courses and
supporting their efficacy. Likewise, matching each student to a desired course is also taken
very seriously. Prior to 2009, this assignment was performed by hand using a labor-intensive
process. This process was ripe for improvement, both in terms of efficiency and quality of
assignment. Without access to sorcery, we decided to use the next best thing: mathematics!
This paper describes the evolution of our automated procedure for creating an assignment.
Our first solution leveraged the classic Minimum Weight Perfect Matching algorithm from
graph theory, with excellent results. More recently, we set out to improve our process by
developing a more flexible approach using Integer Linear Programming. This paper traces the
evolution of this process and discusses the resulting measurable improvements.

Macalester College, a liberal arts college with about 2000 students, offers discipline-specific
first-year courses. Macalester places great institutional effort in developing these courses and
supporting their efficacy. Likewise, matching each student to a desired course is also taken
very seriously. Prior to 2009, this assignment was performed by hand using a labor-intensive
process. This process was ripe for improvement, both in terms of efficiency and quality of
assignment. Without access to sorcery, we decided to use the next best thing: mathematics!
This paper describes the evolution of our automated procedure for creating an assignment.
Our first solution leveraged the classic Minimum Weight Perfect Matching algorithm from
graph theory, with excellent results. More recently, we set out to improve our process by
developing a more flexible approach using Integer Linear Programming. This paper traces the
evolution of this process and discusses the resulting measurable improvements.

2. First Year Course Assignment at Macalester
Every department at Macalester offers one or more first-year seminars, called First-Year
Courses (FYCs). In a given year, no two FYCs are alike. During early summer, students are
given course descriptions and rank their top four choices. The Academic Programs office (AP)
compiles the student preferences and is responsible for assigning students to courses, while
respecting some modest constraints on the enrollment profile of each seminar. Typically,
about 500 incoming students must be placed into about 35 FYCs. The goal is to place each
student into a course that he or she ranked, while also trying to maximize overall student
satisfaction. Roughly speaking, this means trying to have many first- and second-choice
placements, and far fewer third- and fourth-choice placements.

Academic Programs also tries to enforce the following constraints, designed to keep a uniform
experience among classes. First, the class size must be between 10 and 16 students. Sec-
ond, the demographics of each class should be roughly comparable to the entire student
body. Historically, this has meant enforcing a gender balance by reserving 4 seats for men
and 4 seats for women. Macalester’s student body is 60% female, so this constraint becomes
relevant in a few seminars each year. Finally, international students make up 11% of the
student body, and AP has found it useful to cap the number of international students in any
course at 8.

In a given year, it may not be feasible to assign each student to a ranked choice while enforc-
ing all constraints. In these situations, AP allows some isolated constraint violations so that
every student ends up in a desired course; the alternative — placing a student in an unranked
course — is deemed unacceptable.

Prior to 2009, the assignment was performed by hand. Each student’s four preferences were
listed on a sheet of paper and these were organized into piles, each pile representing a semi-
nar. Two staff members would spend a week looking for beneficial chains of swaps that would
improve the overall profile of the assignment. Ultimately, this method worked well: Figure 1
shows some historical results for these manual assignments. In §4 we will show how to get an
assignment for the 2004 data that puts 97.3% into their top two choices (as opposed to the
87.4% from Fig. 1). On average, AP placed 87% of students into their first or second choices.

 2

Figure 1: Manual assignment profiles, 2003–2008

3. The Hungarian Sorting Hat
In 2008, the first author and Macalester senior Sean Cooke tackled the FYC Assignment
Problem in a senior seminar in Combinatorial Optimization. Our goal was to automate the
process by converting the problem to an Assignment Problem (described below). In addition
to the benefits of automation, we were confident that we could also improve the quality of the
assignment. We approached this as a consulting project, where the “client” was the AP office.
Through a series of meetings with them, we identified their requirements, constraints, and
priorities. We used historical data to fine-tune our solution, presented prototypes, and received
feedback on their performance. This sustained dialog was crucial in the final design, and also
to successfully “sell the client” on adopting the algorithm. In particular, we showed AP that our
algorithm, dubbed the Hungarian Sorting Hat because of its use of the Hungarian matching
algorithm, outperformed their manual assignments on the historical data. They adopted our
automated framework in summer 2009, and have used it ever since, but with an algorithm
change in 2013 (§4).

Figure 2 shows the performance of the Hungarian Hat from 2009 to 2012. The average (1st,
2nd, 3rd, 4th) percentages for the manual assignments of Figure 1 were 58.8%, 27.9%,
10.7%, 2.6%. The average performance of the Hungarian Hat is 59.5%, 31.3%, 8.3%, 0.9%.
Even though the years are different than those in Figure 1, this improvement is typical for the
comparison: the Hungarian Hat placed 4.1% more students in their first or second choices,
compared with the manual assignments, as well as many fewer into a fourth choice.

 3

Figure 2: Assignments by the Hungarian Sorting Hat, 2009–2012.

We now describe the mathematics behind the Hungarian Sorting Hat. The FYC Assignment
Problem is a variant of the classic Assignment Problem (see [C]). Suppose that we have n
workers and n jobs to be filled. Each worker is qualified to perform a subset of the jobs,
though his salary depends upon the job assigned. The objective is to find a matching of work-
ers to jobs that minimizes total cost. This situation can be modeled by a weighted bipartite
graph, where the n vertices in one part correspond to the workers and the n vertices in the
other part represent the jobs. If worker i is qualified to perform job j at the cost ci j, then we
connect the corresponding vertices with an edge of that weight. This optimization problem is
solved by the very fast Hungarian Algorithm, developed by Kuhn, who was extending the work
of the Hungarian mathematicians Kőnig and Egerváry. A detailed description of the method is
in [BM, chap 5]. The algorithm analyzes the weighted bipartite graph, and returns a minimum
weight perfect matching. This matching corresponds to an optimal assignment of workers to
jobs. The basis of the algorithm is the use of swaps along augmenting paths, a very natural
idea and one that was used in an informal way by the AP staff when the job was handled
manually.

Our main challenge was to convert the FYC Assignment Problem into a classic Assignment
Problem. This involved two steps. First we created a bipartite graph that enforced the college
constraints on class size and class demographics. Second, we chose a weighting scheme that
ensured that the Hungarian Algorithm made trade-offs that are consistent with the goals and
priorities of the AP office. As we have already seen in Figure 2, the resulting matchings were
of high quality during these years.

We summarize the features of the resulting graph. For a more thorough explanation, see [BC].
In order to run the Hungarian Algorithm, we need a bipartite graph G with parts X and Y ,
where †X § = †Y §, so we start by describing these sets. The set X will represent the students
(workers) and the set Y will represent the classes (jobs). For each class, we place 16 vertices
into Y , one for each seat available. Next, we place a vertex in X for each student. Of course,
there are more class seats than students, so we add some additional “dummy” vertices to X to
balance this out. These dummy vertices will ultimately correspond to empty class seats.

 4

We summarize the features of the resulting graph. For a more thorough explanation, see [BC].
In order to run the Hungarian Algorithm, we need a bipartite graph G with parts X and Y ,
where †X § = †Y §, so we start by describing these sets. The set X will represent the students
(workers) and the set Y will represent the classes (jobs). For each class, we place 16 vertices
into Y , one for each seat available. Next, we place a vertex in X for each student. Of course,
there are more class seats than students, so we add some additional “dummy” vertices to X to
balance this out. These dummy vertices will ultimately correspond to empty class seats.

Next, we describe the edge structure of G from the seminar perspective; a small part of the
graph is in Figure 2. This edge structure enforces class size and demographic constraints. A
given seminar has 16 corresponding vertices. Eight of these vertices are adjacent to every
student interested in the course. Four of the vertices are adjacent only to interested US
women, and the final 4 vertices are adjacent exclusively to interested US men. A fully enrolled
class must have at least 4 US women and 4 US men, and a maximum of 8 international stu-
dents. Finally, each dummy vertex is adjacent to one US woman’s seat, one US man’s seat,
and four generic seats. This means that there can be at most 6 unfilled seats, for a minimum
enrollment of 10 students. Furthermore, a class of size 10 is only required to have 3 US
women and 3 US men.

16 seats

dummy Hempty seatsL

domestic
female

domestic
maleinternational

Y

X

X

Figure 3: The edges connecting the 16 seats in one class to the four types of student: domes-
tic female, international, domestic male, and dummy students. The edge structure assures
that a perfect matching will respect the desired constraints.

Finally, we describe the edge weights. We ultimately settled on a geometric weighting
scheme, where the weights of first, second, third, and fourth choice classes were given by the
weight vector I1, a, a2, a3M for a well chosen a > 1. This scheme has a natural interpretation in
terms of trade-offs one is willing to make in swapping students between classes. The base
weight a is the upper bound on the number of students k we are willing to move down from
first choice to second choice in order to move a single person up from a third choice to sec-
ond. This leads to a smaller weight matching precisely when 0 > k Ha- 1L+ Ia- a2M =
Hk -aL Ha- 1L, a condition equivalent to k < a. Other swaps have analogous interpretations. In
practice, AP would often perform 2-to-1 and 3-to-1 swaps of this kind. Therefore, we ended up
using a = 3.5 as our geometric weight (which also provided results that were stable under
minor changes to the weight value).

The last weight we must describe is the one used for the dummy students. The algorithm
should always prefer to place a real student in a class before placing a dummy student. This
can be accomplished by giving the dummy edge a weight much larger than any of the “real”
edges in the graph. In practice, the value a4 does the trick. And of course, dummy students
have no class preferences, so every dummy edge in the graph is given this same weight. This
concludes the description of the weighted graph model.

 5

The last weight we must describe is the one used for the dummy students. The algorithm
should always prefer to place a real student in a class before placing a dummy student. This
can be accomplished by giving the dummy edge a weight much larger than any of the “real”
edges in the graph. In practice, the value a4 does the trick. And of course, dummy students
have no class preferences, so every dummy edge in the graph is given this same weight. This
concludes the description of the weighted graph model.

This model was a useful tool for attaining a desirable outcome: when there is an assignment
that meets all constraints, the algorithm is guaranteed to find it, and it is very fast. But it can
and does happen that the graph does not have a perfect matching (a matching that covers all
vertices). This will happen if the constraints cannot all be met: perhaps there is a course that
only 3 men have chosen as possibilities; or 3 courses that have male preferences with overlap
so that not all of them can have 4 men. In such cases there is no perfect matching in the
graph and the algorithm fails. Another difficulty (which arose for us in 2013) is when student
choices are such that the class-size constraint (either the minimum or the maximum) cannot
be met. For example, the data might force there to be, say, 12 classes that must increase
enrollment to 17. Some of these problems can be handled by setting up a new graph but that
is tedious, and worse, there is no global solution. For example, one cannot set up a graph that
will provide at most 12 classes of size 17. Instead, one must specify which particular classes
will rise to 17.

Yet another problem arises when a college has a different set of constraints. For example,
Beloit College uses our methods, but wishes to avoid having students from the same high
school placed in the same class, something that cannot easily be set up in the graph environ-
ment. We imagine that some colleges might want to restrict on other demographics, such as
state of residence or athletic participation. Such issues (infeasible or complicated constraints)
will lead to trouble for the Hungarian Sorting Hat. This led us to the Integer Linear Program-
ming method, which is easy to set up, can handle a wide variety of constraints, and will always
perform at least as well as the graph theory method.

4. A Flexible Sorting Hat
Classic linear programming (LP) problems can be solved very quickly by the venerable sim-
plex method. This is quite similar to Gaussian elimination: a straightforward algebraic process.
For combinatorial optimization one often needs integer linear programming (ILP), where the
variables are constrained to have integer values. Algorithms for ILP work by making repeated
(100s or 1000s) calls to LP, using a branch-and-bound approach. A very brief introduction to
branch-and-bound is in [W]; see [T] for more detail.

In LP or ILP we need a linear system of inequalities and an objective function so that (a) a
solution to the system gives as a workable assignment of students, and (b) minimizing the
objective gives an assignment that maximizes student happiness.

The basic variables are easy to set up. Because we will use ILP, all variables are restricted to
be integers. Let the students be S i, 1 § i § n, and the courses C j, 1 § j § m. Let the prefer-
ences of S i be Pi, a set of four integers, the indices for courses the student is willing to take.
For each course C j, let X j be the set of student indices i so that j œ Pi; that is, X j is the set of

students having C j as one of their choices; subdivide this farther into X j
male and X j

female to

denote the male or female students willing to take C j, and also let X j
intl be the set of interna-

tional students willing to take the course. As noted, student preferences can be problematic;
an extreme case would be some X j = «, but if some X j is very small that will also require
some manual intervention, or possibly the canceling of a class. We will describe the setup for
the constraints as given above; a reader facing different constraints should be able to modify
the setup without difficulty.

 6

The basic variables are easy to set up. Because we will use ILP, all variables are restricted to
be integers. Let the students be S i, 1 § i § n, and the courses C j, 1 § j § m. Let the prefer-
ences of S i be Pi, a set of four integers, the indices for courses the student is willing to take.
For each course C j, let X j be the set of student indices i so that j œ Pi; that is, X j is the set of

students having C j as one of their choices; subdivide this farther into X j
male and X j

female to

denote the male or female students willing to take C j, and also let X j
intl be the set of interna-

tional students willing to take the course. As noted, student preferences can be problematic;
an extreme case would be some X j = «, but if some X j is very small that will also require
some manual intervention, or possibly the canceling of a class. We will describe the setup for
the constraints as given above; a reader facing different constraints should be able to modify
the setup without difficulty.

For each pair IS i, C jM where course j œ Pi, introduce a variable xi, j, which is to be 0 or 1, with
a 1 indicating that S i is assigned to C j. This contributes 4 n variables.

The Basic Constraint. For each variable, 0 § xi, j § 1. Also, each student gets exactly one
course: for each i § n, ⁄jœPi xi, j = 1.

The Objective Function. We want to minimize unhappiness. So if Pi = 9 j i,1, j i,2, j i,3, j i,4=, the

objective is to minimize ⁄i=1
n xi, ji,1 +a xi, ji,2 +a2 xi, ji,3 +a3 xi, ji,4 , where a > 1 is a fixed parameter

as described in §3.

Course Size Constraint. There will be an upper bound, U, and a lower bound, L, on course
size; for each j § m, L § ⁄iœX j xi, j § U.

Gender Constraint. A typical gender constraint might be that each course contains at least
four students of each gender: for each j § m, ⁄iœX jmale xi, j ¥ 4 and ⁄iœX jfemale xi, j ¥ 4.

International Constraint. Each course contains at most B international students: for each
j § m, ⁄iœX jintl xi, j § B.

The preceding are the ideal constraints, but it can happen that not all of them can be met. One
way to handle typical problems is to introduce extra variables. For ease of exposition, assume
HL, UL = H12, 16L, but other values can be handled in the same way. Since allowing a course to
grow to 17 is common, as is allowing a course to have fewer than 12, let q j,s be a 0-1 variable
that indicates that the size of C j is s, where 9 § s § 17. Assume that four parameters Q17,
Q11,Q10, Q9 are given; they represent the maximum number of classes whose size is allowed
to be 17, 11, 10, 9, respectively. Now the number of variables is 4 n+ 4 m.

Then the ideal size constraint is replaced by the following:

 for each j and s: 0 § q j,s § 1;
 ⁄j q j,17 § Q17 (number of courses with 17 students is at most Q17);

 ⁄j q j,11 § Q11 (number of courses with 11 students is at most Q11);

 ⁄j q j,10 § Q10 (number of courses with 10 students is at most Q10);

 ⁄j q j,9 § Q9 (number of courses with 9 students is at most Q9);

and for each j § m:

 ⁄s=9
17 q j,s = 1 (size of C j is a unique value between 9 and 17);

 ⁄iœX j xi, j = ⁄s=9
17 s q j,s (size of C j is given by the q-indicator).

 7

 ⁄s=9
17 q j,s = 1 (size of C j is a unique value between 9 and 17);

 ⁄iœX j xi, j = ⁄s=9
17 s q j,s (size of C j is given by the q-indicator).

A similar enhancement relaxes a gender requirement: replace the ideal male constraint by the
addition of indicator variables ym, j so that a value of 1 means that C j has m males. The new

constraints are ⁄m=0
17 ym, j = 1 and ⁄m=0

17 m ym, j = ⁄iœX jmale xi, j (both for all j), and, say,

⁄j y0, j = ⁄j y1, j = ⁄j y2, j = 0 and ⁄j y3, j § Y3, where Y3 is a new parameter that bounds the

number of courses that can be male-deficient by 1. And can also bring in Y2 if needed for
courses with two males. The variable count is now 4 n+ 22 m.

Mathematica has ILP available and can handle a typical setup (there are about 3000 varibles
in our case) in under five seconds, returning either the optimal solution or a message indicat-
ing that the constraints are not feasible. This is so fast that one can run the routine repeatedly
to learn what is feasible and what is not. It is when the basic setup is infeasible that ILP is
most useful, since the auxiliary bounds (Qi, Y3) can be tweaked until a solution is found.

Before using ILP for real, we tried it on past data sets. The 2004 case was interesting: The
profile — 1st through 4th percentages of the manual assignment — was
H59%, 29%, 11%, 1.4%L. The data were such that there had to be a course with only 2 men;
other than that the male constraint could be satisfied. Because that course was easily identi-
fied, the graph matching approach would work since we can just adjust the edge set for that
one course. But things can be more subtle, involving several courses, and there might not be
a simple edge-adjustment approach available.

Using ILP we can vary the settings for the number of male-deficient courses (the Y3 and Y2
mentioned earlier), which is how we learn the minimum violations. We can also add con-
straints of the form "number of 4ths is at most P4" as a way of discovering the minimum num-
ber of 4th choices (it is 6), and similarly for 3rd choices (it is 8). Using a = 1.5 gives the profile
H69%, 27%, 3.3%, 1.2%L, while using a = 5.5 gives H65%, 33%, 1.5%, 1.2%L. The latter has
fewer in #3 and #4, but the former has quite a few more in #1. This sort of trade-off is what we
typically present to AP. Both are significantly better than the manual result. As a bonus, we
learn that the a = 5.5 profile is completely optimal as far as minimizing #3s and #4s. This
leads to another optimization idea, which is to first minimize the number of 4th choices, then
minimize the number of 3rd choices subject to the number of 4th choices being minimal, and
then once more for 2nd choices. Such a method is useful in some ILP problems, but we found
that here it is equivalent to using a large value of a.

Here is how things worked in July 2013 at Macalester. There were 550 students and 34
courses. But the data set was more difficult than average and there could be no assignment
that respected either the upper bound of 16 or the minimum-male requirement of 4. It was
easy to learn that there had to be at least twelve courses of size 17 and at least two courses
with only 3 males. Because the choice of twelve courses to expand is not clear, there is no
easy adjustment to the graph method that can handle this. But ILP has no problem, setting the
oversize parameter Q17 to 12.

Figure 4 shows a chart of the sort we presented to AP in 2013. It shows that: twelve courses
have size increased to 17 students, no course has fewer than 14 students, and two courses
have only 3 males. The preference profile is: 55% into choice #1, 82% into choice #1 or #2,
and 3.8% into choice #4. This is definitely worse than other years, but this data set was less
than ideal.

 8

Figure 4 shows a chart of the sort we presented to AP in 2013. It shows that: twelve courses
have size increased to 17 students, no course has fewer than 14 students, and two courses
have only 3 males. The preference profile is: 55% into choice #1, 82% into choice #1 or #2,
and 3.8% into choice #4. This is definitely worse than other years, but this data set was less
than ideal.

US
male

international
male

international
female

US
female

55%

27%

14%

3.8%

1st

3rd

3 4 14 16 17

Figure 4: The profile for an assignment produced by ILP for actual 2013 data. Two courses
have three males, and twelve courses have 17 students.

In 2013, our ILP method was also used at Beloit College, with 96% getting choice #1 or #2,
and 2% getting choice #4. One word of warning though: ILP is an NP-complete problem and
so if the class size grows into the thousands it will likely be too slow.

5. Conclusion
This topic is useful to colleges in several ways. It helps the mathematics department, since in
an optimization or applied mathematics course, the students find the whole discussion fascinat-
ing, as it involves something they are very familiar with. They quickly appreciate the potential
of both graph theory and ILP to be useful in diverse situations (an especially noteworthy
application of both ILP and matching algorithms is in the optimal arrangement of kidney trans-
plants [A]). And of course the methods are directly beneficial to the college administration. It is
clear that a sophisticated algorithm will outperform any manual approach to the FYC assign-
ment problem.

 9

This topic is useful to colleges in several ways. It helps the mathematics department, since in
an optimization or applied mathematics course, the students find the whole discussion fascinat-
ing, as it involves something they are very familiar with. They quickly appreciate the potential
of both graph theory and ILP to be useful in diverse situations (an especially noteworthy
application of both ILP and matching algorithms is in the optimal arrangement of kidney trans-
plants [A]). And of course the methods are directly beneficial to the college administration. It is
clear that a sophisticated algorithm will outperform any manual approach to the FYC assign-
ment problem.

Any reader interested in learning how our approach could work at their institution should
contact us.

References
[A] D. J. Abraham, A. Blum, T. Sandholm, Clearing algorithms for barter exchange markets:
Enabling nationwide kidney exchanges, Proc. 8th ACM Conf. on Electronic Commerce (2007)
295–303. Available at http://www.cs.cmu.edu/afs/cs/Web/People/sandholm/kidneyEx-
change.EC07.withGrantInfo.pdf

[B] D. Berrett, The many faces of the freshman seminar, Chronicle of Higher Education, July
29, 2013. Available at http://chronicle.com/article/The-Many-Faces-of-the-Freshman/140543

[BC] A. Beveridge and S. Cooke, The mathematical Sorting Hat, The UMAP Journal of Under-
graduate Mathematics and Its Applications, 33:2 (2012) 99–117. Available at https://www.-
macalester.edu/~abeverid/papers/sortinghat.pdf

[BM] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Amsterdam, Elsevier,
1976.

[C] W. Cook, W. Cunningham, W. Pulleyblank and A. Schrijver, Combinatorial Optimization,
New York: Wiley, 1998.

[R] J. K. Rowling, Harry Potter and the Sorcerer’s Stone, New York: Scholastic, 1998.

[T] P. R. Thie, An introduction to Linear Programming and Game Theory, 2nd ed., New York,
Wiley, 1988.

[W] S. Wagon, An algebraic approach to geometrical optimization, Math Horizons (Feb. 2012)
22–27.

 10

