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Abstract

In an Achlioptas process two random pairs of {1, . . . , n} arrive in each round
and the player has to choose one of them. We study the very restrictive version
where player’s decisions cannot depend on the previous history and only one vertex
from the two random edges is revealed.

We prove that the player can create a giant component in

(2
√

5 − 4 + o(1))n = (0.4721 . . . + o(1))n

rounds and this is best possible. On the other hand, if the player wants to delay
the appearence of a giant, then the optimal bound is (1/2 + o(1))n, the same as in
the Erdős-Rényi model.

1 Introduction

Let [n] = {1, . . . , n} be the vertex set. There are m = m(n) rounds. In an Achlioptas
process two random edges arrive in each round and the player, called Paul, has to accept
one of them (and reject the other). It is not surprising that Paul can ensure that the
obtained graph Gm differs from a typical Erdős-Rényi random graph with the same edge
density. The property most frequently studied in this context is the time when a giant
component appears whp, see [3, 4, 5, 6, 7, 11, 14]. Here, whp is an abbreviation for with
high probability, that is, with probability 1 − o(1) as n → ∞. A giant component is a
component of size at least κn where κ > 0 is an absolute constant.
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Unfortunately, it is still an open question what is the earliest/latest time of the birth
of a giant that Paul can ensure. The asnwer is unknown even for some simple specific
Paul’s strategies, such as for example the Product Rule, see [3].

Here, we study the class of more restrictive strategies, which we call memoryless
rules. Namely, Paul’s choice at Round i is a function of the current two random edges,
Di = {xi, yi} and D′

i = {x′
i, y

′
i}, and the number i. It does not depend on what happened

in Rounds 1 to i − 1, that is, Paul does not remember any previous history. Such
restrictions may appear when our online algorithm has to make decisions fast and has
limited computational resources, so processing or storing the current graph is infeasible
or impractical.

We obtain the complete answer for the even more restrictive case when Paul can see
only one vertex xi from the first random edge. Here we assume that the first random
edge {xi, yi} is generated by taking xi ∈ [n] and then yi ∈ [n]\{xi}. (An alternative non-
equivalent setting, namely to reveal min{xi, yi}, is not studied here.) Any memoryless
algorithm of this type is described by the sequence of the acceptance sets A1, . . . , Am ⊆
[n], where Paul selects Di if and only if the revealed vertex xi belongs to Ai. The graph
constructed is denoted by Gm.

Here is one example: suppose Paul accepts Di if and only if xi ≤ n/2. In Section 3
we will prove the following result about this rule.

Theorem 1 Fix a constant ε > 0. Let m = )(c + ε)n*, where

c = 2
√

5 − 4 = 0.4721... (1)

and let each Ai be equal to {1, . . . , )n/2*}, i ∈ [m]. Then, whp the graph obtained has a
unique giant component. Furthermore, the second largest component is of size O((ln n)3).

We show in Section 3 that this simple rule is asymptotically best possible.

Theorem 2 Let c, ε be as in (1). For any sequence A1, . . . , Am, where m = )(c − ε)n*,
whp the maximum component of the generated graph has at most O(ln n) vertices.

Clearly, Paul can generate a genuine Erdős-Rényi graph G(n,m) by always accepting
the first edge. It is well-known that the (unique) giant component appears after (1/2 +
o(1))n rounds. Rather surprisingly, we prove in Section 4 that the constant 1/2 is best
possible.

Theorem 3 For every constant ε > 0 and any A1, . . . , Am ⊂ [n], m = )(1/2 + ε)n*,
whp the obtained graph has a giant component.

Let us very briefly describe the main ideas of the proofs as well as define a few
parameters that we will use later. Let m and A1, . . . , Am ⊆ [n] be given and Gm be
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the graph constructed by the corresponding memoryless rule. The expected number of
rounds in which any given (unordered) pair {x, y} is accepted is

pxy =
1(
n
2

)
m∑

i=1

(
1x∈Ai + 1y∈Ai

2
+

n − |Ai|
n

)
, (2)

where the indicator function 1x∈Ai is 1 if x ∈ Ai and 0 otherwise. For z ∈ [n] let
γz = |{i : z ∈ Ai}|. We can write as pxy = px + py, where

px =
m − γ

n(n − 1)
+

1

n(n − 1)

m∑

i=1

1x∈Ai =
m − γ + γx

n(n − 1)
, (3)

and γ = 1
n

∑m
i=1 |Ai| = 1

n

∑n
z=1 γz.

The probability that {x, y} is chosen at least i times is O(n−i) (assuming m = O(n)).
It follows that the probability that {x, y} ∈ E(Gm) is pxy(1 + O(n−1)). Thus one might
expect that the random graph that contains {x, y} with probability pxy independently of
the other edges is a good approximation to the obtained graph Gm. Such inhomogeneous
random graph models were studied by Alon [1], Söderberg [13], Bollobás, Janson, and
Riordan [8], and others. However, given some dependences between the edges of Gm, we
have found it more convenient to adopt the branching process approach. We proceed in a
manner similar to the proof given in Janson, "Luczak, and Rucinski’s book [12, Section 5.2].
Namely, to estimate the order of the connectivity component C of Gm that contains a
given vertex x, we approximate the breadth-first search from x by an appropriate ideal
branching process. A new technical difficulty in comparison to [12, Section 5.2] that we
face is that the vertices are not homogeneous, so we have to use multi-type branching
processes. All details appear in Section 2.

The case when Paul can use more information about the two random edges than just
one vertex seems to be far more complicated.

In what follows, any inequalities will assume that n is sufficiently large.

2 Approximation by Branching Processes

Here we will relate the appearence of a giant component to the extinction probability
of certain branching processes. We refer the Reader to Athreya and Ney [2] for all
definitions related to branching processes, in particular to Chapter V in [2] which deals
with multi-type processes.

It will be the case that in the ideal multi-type branching processes we will consider
the size of the offspring Xi,j of Type j that a particle of Type i produces has Poisson
distribution and, for every i, the random variables Xi,j are independent. Let us call
such a process a Poisson branching process. Thus all the transition probabilities can be
encoded by the mean matrix M , where Mi,j = E(Xi,j).

Unfortunately, we cannot just take (pxy) for M , since our proof will require that the
square matrix M has a bounded number of rows and that all entries are strictly positive.
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Therefore, in order to prove a sufficient condition for the existence of a giant component
we proceed as follows.

Let m and A1, . . . , Am ⊆ [n] be given, all depending on n. Assume that m = θ0n
where θ0 > 0 is a positive constant. When necessary, this dependence on n will be
emphasized by a superscript, as in A1 = A(n)

1 . Without loss of generality we can assume
that, for example, n/4 ≤ m ≤ n because outside this range the existence of a giant is
whp predermined irrespective of what Paul does, see Bohman and Kim [6] and Bohman
and Kravitz [7].

Let

pmax =
2m

n(n − 1)
.

We have px < pmax for every x ∈ [n], where px is defined as in (3).

2.1 A Sufficient Condition For the Existence of Giant

In what follows we will introduce small positive constants c1, c2, . . . ,. They will not be
specified exactly, but we will indicate there relative sizes.

Let ν0 = (ln n)2 and let k = ,1/c1-. Define

Vi = {x ∈ [n] | ipmax ≤ kpx < (i + 1)pmax}, i ∈ [0, k − 1],

and
I =

{
i ∈ [k − 1] | |Vi| ≥ n/k2

}
.

Note that, by the definition, 0 /∈ I ⊆ {1, 2, . . . , k − 1}.
Let

V =
⋃

i∈I

Vi.

We show next that |V | is close to n. Indeed, let us estimate n0 = |V0| in this case.
We have

n0pmax

k
>

∑

x∈V0

px =
1

n(n − 1)

m∑

i=1

|V0 ∩ Ai| +
n0m

n(n − 1)
− n0

n2(n − 1)

m∑

i=1

|Ai|.

Using the estimate |Ai| ≤ |V0 ∩ Ai| + n − n0, we get

n0 × 2m

kn(n − 1)
>

n2
0m

n2(n − 1)
+

n − n0

n2(n − 1)

m∑

i=1

|V0 ∩ Ai| ≥
n2

0m

n2(n − 1)
,

which shows that n0 < 2n
k . Since, |∪i∈[k]\I Vi| ≤ k(n/k2) = n/k and ∪k

i=0Vi = [n], we have

|V | ≥
(

1 − 3

k

)
n. (4)
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For i, j ∈ [0, k] let

Mi,j = max

{
(i + j)pmax

k
|Vj|− c2, 0

}

where c2 3 c1.

Let t = |I|. Let M be the t × t-matrix with rows and columns indexed by I whose
entries are Mi,j. The entries of M are strictly positive.

The definition of I implies that each entry of M is at least 2pmax

k × n
k2 −c2 ≥ 3θ0c3

1−c2,
that is, it is bounded from 0 by a constant independent of n. The Frobenius Theorem
implies that M , as a matrix with strictly positive entries, has a maximal eigenvalue λ1

which is positive and simple.

Lemma 4 Suppose that there exists θ1 > 0 such that λ(n)
1 ≥ 1 + θ1 for all sufficiently

large n. Then whp Gm contains a unique giant component. Furthermore, the second
largest component is of size O((ln n)3).

Proof. Fix x ∈ V . Let us expose the vertex set of the connected component containing
x in the following way. Initially mark all vertices as unsaturated. We do a breadth first
search in Gm[V ] starting with the vertex x. Let Cx (initially {x}) be the current set of
vertices we have added to V (C). If |Cx| ≥ ν0, then we stop. Otherwise take an available
unsaturated vertex y ∈ Cx that is closest to x. If no such vertex y is available, then we
stop — we know the vertex set of the component containing x. Expose all remaining
edges of Gm that that are incident to y together with the indices of the rounds in which
they were generated. Add these neighbors of y to R. Mark y as saturated. We let
Bx ⊆ Cx denote the saturated vertices of Cx. Assign to each vertex of Cx, one of the t
types, depending on which of the sets Vi, i ∈ I, it comes from.

Consider the moment when we expose neighbors of some vertex y, say y ∈ Vi. Let
S ⊂ [m] consist of the indices of rounds for which we have not previously exposed the
accepted edge. We have |S| ≥ m − ν0 − O((ln n)2). This is because whp every set of
ν0 vertices in Γ spans at most ν0 + O(ν0/ ln n) edges and the maximum degree in Γ is
o(ln n). Here Γ is the graph spanned by all 2m edges generated. Furthermore, it is also
easy to see that

Pr(Cx contains a cycle) = O(ν2
0/n). (5)

(The probability that some unsaturated x chooses an unsaturated y ∈ Cx is ≤ 4mν0/n(n−
1).)

Notice also that our bound on maximum degree implies that when we stop our process
having reached ≥ ν0 vertices we have

|Cx| ≤ ν0 + o(lnn).

Conditioning: At any stage the edges in Di, D′
i, i ∈ S are random subject to the

conditions:
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• If xi ∈ Ai then {xi, yi} ∩ Bx = ∅.

• If xi /∈ Ai then {x′
i, y

′
i} ∩ Bx = ∅.

Note that for any z ∈ Vj \ Cx and s ∈ S, the probability that {y, z} is selected
in Round s is at least as large as the unconditional probability. This is because no
outcome (Ds, D′

s) that results in the acceptance of {y, z} in Round s is ruled out by our
conditioning, although some outcomes involving edges meeting Cx can be.

Since the probability that a pair {y, z} is selected in any given Round q is trivially at
most

Pr
(
Dq = {y, z} ∨ D′

q = {y, z}
)
≤ 2(

n
2

) ,

the probability that {y, z} is selected in an S-round is at least

pyz −
2ν0(

n
2

) ≥ pmax(i + j)

k
− 5ν0

n2
. (6)

Also, the outcomes of the rounds indexed by S are still independent events. Thus,
for j ∈ [0, k− 1], the number Yj of neighbors of y in Vj \Cx, counted with multiplicity, is
the sum of |S| independent Boolean random variables, each having expectation at most
Pr(y ∈ Dq ∪ D′

q) ≤ 4/n. Also, λ = E(Yj | previous history) ≤ m(4/n) = O(1). It
follows from Durrett [9], Chapter 2, Equation (6.5), that

sup
A⊆Z

|Pr(Yj ∈ A) − Pr(Po(λ) ∈ A)| ≤ 16

n
(7)

where Po(λ) is Poisson with mean λ. Note next that if j ∈ I,

E(Yj | previous history) ≥
(

pmax(i + j)

k
− 5ν0

n2

)
|Vj \ Cx| ≥

(
pmax(i + j)

k
− 5ν0

n2

)
(|Vj|− ν0) ≥ Mi,j + c2/2.

Note also that for i, j ∈ [0, k − 1]

E(Yj) ≤
pmax(i + j + 2)

k
|Vj| ≤ Mi,j + 5θ0c1|Vj|/n. (8)

We can therefore couple the BFS tree (plus a few extra edges) that we grow from x
with the following: Given the current y ∈ Vi we generate Po(Mi,j) new Red neighbours
for each j ∈ I. Then we generate

Po(ξj), ξj = E(Yj | previous history) − Mi,j , c2/2 ≤ ξj ≤ 5θ0c1

Blue neighbours in Vj for each j ∈ [0, k] and then with probability at most 16/n we invoke
a demon who will add or delete some number of new neighbours. (This demon will qs1

1A sequence of events En is said to occur quite surely (qs) if Pr(En) = 1 − O(n−K) for any constant
K.
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add/delete O(ln n) edges, since the maximum degree is O(ln n) with this probability). It
follows that with probability at least 1−16ν0/n the Red part of the BFS tree is the same
as first ν0 progeny of the idealised multi-type branching process.

It will be seen that this coupling is valid as long as the number of progeny is o(n).

Let ρi = ρ(n)
i be the extinction probability of B(n)

i , the ideal branching process given
by M (n) that starts with one particle of Type i, i ∈ I. Let us show that each ρi is strictly
bounded away from 1.

Suppose that this is not true, that is, we can choose q ∈ [k] and a sequence (nl)∞l=1

such that q ∈ I(nl) for each l and liml→∞ ρ
(nl)
q = 1. We can additionally require that I(nl)

does not depend on l. Since the entries of M are bounded by 2kpmaxn = O(1), we can
assume, by taking a subsequence, that M (nl) tends to a limiting matrix M (∞), that is,
liml→∞ M (nl)

i,j = M (∞)
i,j for any i, j ∈ I.

The matrix M (∞) is strictly positive and its largest eigenvalue λ(∞)
1 is at least 1 + θ1

(because it is the maximum of ‖xT M (∞)x‖ over all unit vectors x ∈ Rt). Hence, [2,

Theorem V.3.2], we can assume that ρ(∞)
i < 1 − c3, c3 = c3(θ1) for each i ∈ I.

Let X(n)
i,r (resp. X(∞)

i,r ) be the event that B(n)
i (resp. B(∞)

i ) dies within the first r rounds.

We have ρ(∞)
i = limr→∞ Pr(X(∞)

i,r ), since ∪∞
r=1X

(∞)
i,r is the extinction event. So we can

pick a sufficiently large r so that, in particular, for any i ∈ I
∣∣∣ρ(∞)

i − Pr(X(∞)
i,r )

∣∣∣ < c3/4.

Also, by [2, Theorem V.6.2]), we can assume that the probability of B(∞)
i surviving r

levels but having at most, say, (1 + θ1)r/2 particles at level r, is at most c3/4.

Now choose l0 (depending on r) so that for any l ≥ l0 the variation distance between

the distribution on the first r levels of branching for B(∞)
i and B(nl)

i is at most c3/4.

For all such l, B(nl)
i has at least (1 + θ1)r/2 particles at level r with probability at least

p = 1−c3/4−ρ(∞)
i −c3/4 > c3/2. Hence, the extinction probability of B(nl)

q can be bounded
from above by p0, the extinction probability of the (single-type) branching process that
produces D = (1 + θ1)r/2 children with probability p and none with probability 1 − p.
The expected number of progeny of an individual in this process is p(1 + θ1)r/2 ≥ c3(1 +
θ1)r/2/2 ≥ 1+θ1, for r sufficiently large. We have 1 > p0 = 1−p+ppD

0 . If p0 = 1−p+ε then
ε = ppD

0 . As we increase r, D increases and the probability of extinction decreases. (We
can see the latter by a simple coupling argument). We can therefore make r sufficiently

large so that pD
0 ≤ 1/2. In which case ρ(nl)

q ≤ p0 ≤ 1−c3/4, contradicting liml→∞ ρ
(nl)
q = 1.

So we can assume that ρ(n)
i ≤ 1− c4 for some c4 3 1 and for any i ∈ I. Now for each

x ∈ [n] let zx = 1 if |Cx| ≥ ν0. Let zx = 0 otherwise. The analysis above shows that if
x ∈ Vi, i ∈ I then Pr(zx = 1) ≥ θ1 − O(ν0/n). So if Z =

∑
x∈V zx, then E(Z) ≥ θ1n/2.

With a view to applying the Chebyshev inequality, we now estimate Pr(zx = zy = 1) for
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x ∈ Vi, y ∈ Vj, i, j ∈ I.

Pr(zx = zy = 1) ≤ Pr(zx = 1 | zy = 1, x ∈ Cy)Pr(x ∈ Cy) +

Pr(zx = 1 | zy = 1, x /∈ Cy)Pr(zy = 1)

= O(ν0/n) + Pr(zy = 1)(Pr(zx = 1) + O(ν2
0/n)). (9)

To verify (9) we observe that

Pr(x ∈ Cy) ≤ Pr(∆(Gm) ≥ ln n) + 2(ν0 + lnn)pmax = O(ν0/n).

The term 2(ν0+ln n)pmax bounds |Cy| times the probability that an edge {v, x}, v ∈ Cy is
discovered in the BFS construction of Cy. Then to estimate Pr(zx = 1 | zy = 1, x /∈ Cy)
we use O(ν0/n) to bound the probability that we invoke the demon when constructing
Cy. Then we maximally couple the conditioned and unconditioned Red/Blue branching
processes. Then there are ν0 opportunities for these to deviate, each having a probabiliy
of O(ν0/n).

Therefore
E(Z2) ≤ O(ν2

0n) + E(Z)2

and so

Pr(Z ≤ E(Z)/2) ≤ O(ν2
0n)

E(Z)2
= o(1).

Now let ζx = 1 if the above BFS procedure when started with x and allowed to continue
results in exposing a component of size at least n2/3. We show that whp there exists a
set X of size O((ln n)3) such that

ζx = zx for all x /∈ X. (10)

We will show then that whp, x, y /∈ X and

ζx = ζy = 1 implies that x and y lie in the same component. (11)

It follows from (10) and (11) that whp there is a component with Z ≥ θ1n/2 − o(n)
vertices and that every other component is of size O((ln n)3), completing the proof of the
lemma.

The exceptional vertices X are those for which either (i) we have to invoke the demon
before exposing n2/3 vertices during the BFS construction or (ii) Cx contains a cycle. We
have E(|X|) ≤ 16ν0 + O(ν2

0/n), by (5), and so |X| = O((ln n)3) whp.

We show next that if Cα
x denotes the vertices of color α = Red,Blue in Cx then for

some c5 3 1,
Pr(x /∈ X and zx = 1 and |CBlue

x | ≥ c5ν0) ≤ n−2. (12)

For each y ∈ CRed
x let By be the vertices z ∈ CBlue

x that are direct descendants of y i.e. the
path from y to z is Blue, except for y. It follows from (8) that |By| is dominated by the
number W of proper descendants in a single type branching process where the number of
progeny is Po(µ), µ = 5θ0c1. Let ν ′0 = ν0 + ln n and let Z = W1 + W2 + · · · + Wν′

0
where
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the Wi are independent copies of W . The moment generating function E(euPo(µ)) =
exp{µ(eu − 1)}. So for any t ≥ 1 we have, after putting u = ln(t/µ),

Pr(Po(µ) ≥ t) ≤ e−tuE(euPo(µ)) = e−µ
(µe

t

)t

≤ (3µ)t. (13)

Now consider labelling the progeny of a branching process by sequences i1, i2, . . . , ir.
This sequence is irth child of the ir−1th child of the . . . of the i1th child of the root. The
probability that such a particle exists is by (13), at most (3µ)i1+···+ir . It follows that

Pr(W ≥ t) ≤
∞∑

r=1

∞∑

s=t

∑

i1+···+ir=s
i1,...,ir≥1

(3µ)s =
∞∑

r=1

∞∑

s=t

(
s − 1

r − 1

)
(3µ)s =

∞∑

s=t

2s−1(3µ)s ≤ (6µ)t.

So,

Pr(Z ≥ t) ≤
∞∑

s=t

∑

i1+···+iν′0
=s

i1,...,iν′0
≥0

(6µ)s =
∞∑

s=t

(
s + ν ′0 − 1

s − 1

)
(6µ)s ≤ 2ν′

0(12µ)t.

We can choose c1 3 c5 3 1 so that putting t = c5ν ′0 into the above proves (12).

We now consider the Red branching process at a point where s generations have been
produced and the total progeny is at least ν1 = ν0 − c5ν0. We will now show that whp
after O(1) more rounds, a sufficient number of Red progeny are at the bottom level. Let
t(0) = [t1, t2, . . . , tk]T where ti is the number of progeny of Type i that are in the first
s − 1 levels. Let bi be the number of progeny of Type i at the bottom level and let Ni,j

be the number of progeny of Type j that are children of progeny of Type i. Then we
have

bj =
k∑

i=1

Ni,j − tj . (14)

We will use the following concentration inequalities (see Appendix):

Pr(Po(λ) ≥ λ+ u) ≤
{

e−u/3 u ≥ λ
e−u2/(3λ) u ≤ λ

(15)

Pr(Po(λ) ≤ λ− u) ≤ e−u2/(2λ) (16)

Now bj is the sum of ti variables each distributed as Po(Mi,j). We can imagine generating
ν ′0 such random variables X1, X2, . . . , Xν′

0
. Then (15) and (16) imply that for some c6, c7,

Pr(∃t ≤ ν ′0 : |X1 + · · · + Xt − tMi,j | ≥ c6ν1) ≤ ν ′0e−c7ν′
0 . (17)

To see this, first note that X1 + · · ·+ Xt is distributed as Po(λ), λ = tMi,j . We use (15)
and (16) directly with and u = c6ν1 to get the bounds.

It follows from (14) and (17) that

Pr

(∣∣∣∣∣bj −
k∑

i=1

tiMi,j + tj

∣∣∣∣∣ ≥ c6ν1

)
≤ e−c7ν1/2. (18)
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If we continue the process for + = O(1) more rounds and let t($) take the place of t(0)

then we can write
tT
(l) = tT

(l−1)M ± c8ν1e
T

where e = [1, 1, . . . , 1]T and c8 can be made arbitrarily small.

Iterating we get that qs,

tT
($) = tT

(0)M
$ ± c8ν1e

T (M $−1 + · · · + I).

Now we can write
M $ = ρ$uvT + O((ρζ)$J)

where, using the Frobenius Theorem for positive matrices, u,v > 0 are the left and right
(column) eigenvectors of norm 1 corresponding to ρ, 0 ≤ ζ < 1 is a constant and J is the
all 1’s matrix. Note that the coordinates of u,v > 0 are bounded below by some positive
constant that depends only on θ0.

Making + large we have qs,

tT
($) = (1 ± c9)ρ

$(tT
(0)u)vT .

We now return our attention to the actual BFS construction. Let U (0)
j denote the set of

unsaturated vertices of Type j at the time of construction of the (s++)th Red generation.
Then, given zx = 1, we have that qs

|U (0)
j | ≥ c10vj(ln n)2 (19)

where c10 = ((1 − c9)ρ$ − (1 + c9)ρ$−1)(tT
(0)u) − c7 > 0.

Now for each j, choose a subset of U (0)
j of size exactly c10vj(lnn)2. Now let U (0) =

⋃
j U (0)

j and then define the sequence U (0), U (1), . . . , where U (t+1) is a subset of the neigh-

bors of U (t) in V \ Cx. Then let U (t)
j = Vj ∩ U (t) for j ∈ [k].

Assume that
|U (t)

j | = c10(ρ− c11)
tvj(ln n)2

for a small c11 and for all j.

Now |U (t+1)
j | is the sum of

∑
i |U

(t)
i |(|Vj|− O(n2/3)) Bernouilli random variables and

E(|U (t+1)
j |) ≥

∑

i

|U (t)
i |Mi,j = c10(ln n)2(ρ− c11)

t
∑

i

viMi,j = c10(ρ− c11)
tρ(lnn)2vj.

Furthermore, it dominates a sum of independent variables where for each i, j we have
probability of being 1 is equal to Mi,j. So, applying Hoeffding’s inequality we see that qs

|U (t+1)
j | ≥ c10(ρ− c11)

t+1(lnn)2vj.

Then taking subsets we can assume that

|U (t+1)
j | = c10(ρ− c11)

t+1(ln n)2vj.

10



It follows, after iterating O(ln n) times that we reach τ such that |U (τ)
j | = Θ(n2/3) for

each j. This verifies (10).

Now suppose that ζx = ζy = 1 and Cx ∩ Cy = ∅. We use the notation U (x)
j to denote

the unsaturated vertices of Cx of Type j at the time its size reaches Θ(n2/3) and a similar

notation for y. We let U (x) =
⋃

i U
(x)
i .

The number of edges between U (x) and U (y) is the sum, over unexposed rounds, of
Bernouilli random variables and the expected number is at least (see (6) and replace ν0

by O(n2/3))
∑

i,j∈I

|U (x)
i | |U (y)

j |
(

i + j

k
pmax −

O(n2/3)

n2

)
≥ c12n

1/3.

Furthermore, it dominates such a sum of independent variables and we see that qs there
is at least one edge joining U (x) and U (y). This proves (11) and completes the proof of
the lemma.

2.2 A Sufficient Criterion for the Non-Existence of Giant

Let px, pxy, pmax, c1, c2, k, Vi be as above. We re-define M to be the k × k-matrix with
entries

Mi,j =
((i + 1) + (j + 1))pmax

k
|Vj| + c2

1, 0 ≤ i, j ≤ k − 1.

Lemma 5 Suppose that there are c2 > 0 and n0 such that for all n ≥ n0 we have
λ(n)

1 < 1 − c2. Then whp each component of Gm has order O(ln n).

Proof. As before, one can argue that the breadth first search is dominated by the Poisson
multi-type branching process given by M as long as we have exposed at most o(n) edges.
Lemma 6 below shows that for some C, the probability that the branching process Bi,
any 0 ≤ i ≤ k− 1 reaches at least C lnn vertices is at most n−2 say. Hence, the expected
number of vertices of Gm in components of size at least C ln n is o(1) and by Markov’s
inequality whp there is no such component.

Lemma 6 There is a positive constant δ = δ(ε, t) such that the following holds. Let B be
the Poisson branching process with mean t× t-matrix M that starts with one particle (of
any type). If the largest eigenvalue of M is λ1 < 1 − ε then, for every s, the probability
that B reaches at least s vertices is at most (1 + δ)1−s.

Proof. Let ε0 > 0 be sufficiently small to satisfy

1 − (1 − ε)(1 + ε0) > 2t2ε0.

It is enough to prove the claim for all sufficiently large s, s ≥ s0, where s0 = s0(ε, t, ε0).
Let us run the process B level by level until the process dies out or we reach at least s

11



particles in total, after some level has been added. We do not expose the whole process
but only the following information: the vector n = (n1, . . . , nt)T , where ni is the total
number of particles of Type i generated.

Suppose that we have reached s ≥ s0 particles, s = n1 + · · · + nk. We claim that for
some i, j we have

ni,j ≥ (1 + ε0)niMi,j + ε0s, (20)

where ni,j is the total output of Type j particles that are produced (looking forward and
including the next level) by the ni particles of Type i that were born by now. Note that
we do not expose ni,j ’s but only state that whatever feasible values these variables have,
they must satisfy (20) for some i, j. Suppose on the contrary that (20) is false for all i, j.
Let 1 = (1, . . . , 1)T be all-1s column vector. For every j ∈ [t] we have nj ≤

∑t
i=1 ni,j + 1,

where the last term accounts for the initial vertex which is not born but given. This
implies that we have the following coordinawise domination:

n ≤ (1 + ε0)M
Tn + ε0ts1 + 1.

Taking the l2-norm, using the triangle inequality and the fact that ‖MTn‖ ≤ (1− ε)‖n‖,
we conclude

‖n‖ − (1 − ε)(1 + ε0)‖n‖ < ε0t
3/2s′ +

√
t.

But
∑t

i=1 ni = s implies that ‖n‖ ≥ s/
√

t, which contradicts the choice of ε0.

We can generate the branching process by first generating t2 infinite sequences

(Xi,j,1, Xi,j,2, . . . ), i, j ∈ [t],

of independent Poisson outcomes with means E(Xi,j,l) = Mi,j. Now, whenever we have
to determine the offspring of Type j of a particle of Type i, we take the first unused Xi,j,l.
Under this coupling the probability that (20) holds is at most the probability that there
exist n1, . . . , nt with s = n1 + · · · + nt ≥ s0 and i, j ∈ [t] such that

Xi,j,1 + · · · + Xi,j,ni ≥ (1 + ε0)niMi,j + ε0s. (21)

Note that the sum Xi,j,1 + · · · + Xi,j,ni is distributed as the Poisson variable Po(µi,j)
with mean µi,j = niMi,j. Thus, by the union bound, the probability of (20) is at most

∑

s≥s0

∑

i,j

stPr(Po(µi,j) ≥ (1 + ε0)µi,j + ε0s) ≤
∑

s≥s0

∑

i,j

ste−Ls

for some L = L(ε0).

To define L we observe that if µi,j ≤ ε0s/2 then we can take L ≥ ε0/3 whereas if
µi,j > ε0s/2 then we can take L ≥ ε30/6, after using the bounds in (15).

3 Creating a Giant

Here we prove Theorems 1 and 2.
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3.1 Proof of Theorem 1

Let us first investigate the following strategy for Paul. We have m rounds and Paul uses
the same acceptance set A in each round, that is, A1 = · · · = Am = A. Let |A| = a.
Assume that the limits

α = lim
n→∞

a/n, µ = lim
n→∞

m/n

exist and 0 < α < 1. Let B = [n] \ A be the complement of A. The function px assumes
two possible values:

px =

{
2mn−ma
n2(n−1) , x ∈ A,
mn−ma
n2(n−1) , x ∈ B.

When we construct the upper bound matrix M as in Section 2.1, then when c1, c2 ap-
proach 0, we eventually obtain 2 × 2 matrix which for large n is approximately

µ ×
(

(4 − 2α)α (3 − 2α)(1 − α)
(3 − 2α)α (2 − 2α)(1 − α)

)
. (22)

The largest eigenvalue of this limiting matrix is

λ1 = µ(1 +
√

1 + α− α2) (23)

If α = 1/2 (the case of Theorem 1), then taking µ to be strictly larger than 2
√

5 − 4,
we ensure that λ1 is strictly larger than 1, say λ1 ≥ 1 + 2c2 for some positive constant
c2. Since the limit of λ(n)

1 is λ1, we have λ(n)
1 ≥ 1 + c2 for all sufficiently large n. Now

Theorem 1 follows from Lemma 4.

3.2 Proof of Theorem 2

Let us turn to Theorem 2. Suppose that m ≤ 2
√

5 − 4 − ε for some constant ε > 0. We
define the k×k-matrix M as in Section 2.2. In order to prove Theorem 2 it is enough, by
Lemma 5 to show that there is δ > 0, depending only on ε, such that for all sufficiently
large k (= small c1) and all large n, we have λ1 < 1 − δ.

Our matrix M has the form:

M = (1pT + p1T )D + M̂.

Here p is the column vector (pmax/k, 2pmax/k, . . . , pmax) and D is the diagonal matrix with

ν0, . . . , νk−1 on diagonal, where we denote νi = |Vi|. Furthermore, maxi,j |M̂(i, j)| ≤ c2
1

and 1T D1 =
∑k−1

i=0 ν1 = n.

Now for |x| = 1, we have |xT M̂x| ≤ kc2
1 ≤ 2c1 and so it suffices to prove that the

largest eigenvalue of M − M̂ is bounded away from 1. With this in mind, M is really
M − M̂ in the analysis below.

Suppose that v is a column eigenvector corresponding to eigenvalue λ1 of M . Then

λ1v = Mv = 1(pTDv) + p(1T Dv),
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belongs to the span of p and 1. Note that v is not a multiple of 1 (otherwise p would
also be such a multiple, and it clearly isn’t).

Write
v = µp + ν1, (24)

with µ, ν ∈ R. Note that µ /= 0. Substituting (24) into λ1v = Mv and equating the
coefficients, when expanded in basis {p,1}, we obtain

{
λ1µ = µ1T Dp + ν1T D1,
λ1ν = µpT Dp + νpTD1.

From the first equation, we get ν = µ(λ1 − 1T Dp)/1TD1. Substituting this into the
second equation and cancelling µ, we obtain

λ1
λ1 − 1T Dp

1T D1
= pT Dp +

λ1 − 1T Dp

1TD1
(pTD1). (25)

Since D is a diagonal matrix, we have 1T Dp = pT D1. Substituting 1T D1 = n we see
that the larger root of the quadratic equation (25) is

λ1 = 1T Dp +
√

npT Dp. (26)

Now,

1T Dp =
k∑

i=0

νi
(i + 1)pmax

k
∈




∑

x∈[n]

px,
∑

x∈[n]

(
px +

pmax

k

)


 .

But ∑

x∈[n]

px =
∑

x∈[n]

m − γ + γx

n(n − 1)
=

m

n − 1
− γ

n − 1
+

∑
x γx

n(n − 1)
=

m

n − 1

and so

1T Dp ≤ m

n − 1
+

npmax

k
≤ m

n − 1
+

1

k
. (27)

Suppose we fix γ and we want to maximize the right-hand side of (26). Then up to
O(1/k) we have to maximize

pT Dp =
k∑

i=0

νi

(
(i + 1)pmax

k

)2

∈




∑

x∈[n]

p2
x,

∑

x∈[n]



p2
x +

2pmax

k

∑

x∈[n]

px +
np2

max

k2







 .

But,

∑

x∈[n]

p2
x =

∑

x∈[n]

(
m − γ + γx

n(n − 1)

)2

=
m2 − γ2

n(n − 1)2
+

∑

x∈[n]

γ2
x

n2(n − 1)2
.
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and so

npT Dp ≤ m2 − γ2

(n − 1)2
+

∑

x∈[n]

γ2
x

n(n − 1)2
+

2n2p2
max

k
+

n2p2
max

k2

≤ m2 − γ2

(n − 1)2
+

∑

x∈[n]

γ2
x

n(n − 1)2
+

2

k
.

Now, if we want to maximize this expression over reals, given γ = 1
n

∑
x γx and the

constraints 0 ≤ γx ≤ m, then we should take each γx either 0 or m (except at most one
value) to have equality in γ = 1

n

∑
x γx. So

∑
x∈[n] γ

2
x ≤ mnγ + m2 and

npT Dp ≤ (m2 − γ2)n + mnγ

n(n − 1)2
+

3

k
. (28)

Going back to (26), we see from (27) and (28) that

λ1 ≤
m

n
+

(
(m2 − γ2)n + mnγ

n(n − 1)2

)1/2

+
4

k
.

This expression is maximised when γ = m/2 and so if m = cn then

λ1 ≤ c

(
1 +

√
5

2

)
+

4

k
+ o(1) ≤ 1 − 2

√
5 + 4

4
ε+

5

k

which is bounded away from 1 from sufficiently large k. This completes the proof of
Theorem 2.

4 Delaying a Giant

As we have already observed in the introduction, by always selecting the first edge Paul
can ensure that a giant component appears whp after about n/2 rounds. Here we show
that, essentially, he cannot delay the birth of giant any longer, that is, prove Theorem 3.

Let ε > 0 be given. Choose sufficiently small c1 8 c2 8 c3 > 0. Let M be the matrix
as defined in Section 2.1. As we have already observed, we have |V | ≥ (1 − 3/k)n. Let
l = )1/c2* 8 k. We are going to define a new square matrix L which has approximately l
rows and also describes a multi-type branching process. Replace row i by )|Vi|/(n/l)* new
rows and each column j by )|Vj|/(n/l)* new columns. The entry of L in the intersection
of a row and a column that are derived from row i and column j is

(i + j)pmax

k
× n

l
− c3.

The square matrix L has ρ rows where l(1 − 4/k) ≤ ρ ≤ l. To understand its construc-
tion, here is the interpretation in terms of graphs. To this end, we partition each Vi,
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into as many disjoint sets Uj as possible with each Ui having precisely )n/l* elements.
All the remaining vertices (at most k × (n/l) 3 n/k) we “discard”. The entry Li,j is
approximately the expected number of offspring in the set Uj of any vertex in Ui. Thus
L also well describes a Red branching process as defined in Lemma 4. In order to finish
the proof it is enough to argue that the largest eigenvalue of L is at least 1 + ε.

But the number 1T L1 is approximately the sum over Ui of the expected number of
edges from a vertex of Ui into ∪jUj. More precisely, (n/l)× 1T L1 ≥ (2−O(1/k))e(Gm),
so

1T L1 > (1 + 3ε/2)l.

Also, 1T1 = l(1 − O(1/k)), so
1T L1

1T1
≥ 1 + ε,

which implies that the largest eigenvalue of L is at least 1 + ε, as required.
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[13] B. Söderberg. General formalism for inhomogeneous random graphs. Phys. Rev. E,
66:066121, 2002.

[14] J. Spencer and N. Wormald. Birth control for giants. To appear in Combinatorica,
2006.

A Proof of (15) and (16)

Let eθ = 1 + u/λ.

Pr(Po(λ) ≥ λ+ u) ≤ e−θ(λ+u)E(eθPo(λ))

= exp{λ(eθ − 1) − θ(λ+ u)}
= exp{u(1 − (1 + λ/u) ln(1 + u/λ)} (29)

If u ≤ λ then we use
(1 + 1/x) ln(1 + x) ≥ 1 + x/3

for 0 ≤ x ≤ 1.

Plugging x = u/λ into (29) gives the required inequality (15) in the case u ≤ λ. If
λ ≤ u then we use

(1 + 1/x) ln(1 + x) ≥ 2 ln 2 = 1.386924...

for x ≥ 1.

For (16) we have, with e−θ = 1 − u/λ,

Pr(Po(λ) ≤ λ− u) ≤ eθ(λ−u)E(e−θPo(λ))

= exp{λ(e−θ − 1) + θ(λ− u)}
= exp{u((1 − λ/u) ln(1 − u/λ) − 1)}
≤ e−u2/(2λ).
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